1
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Ali S, Mir RA, Tyagi A, Manzar N, Kashyap AS, Mushtaq M, Raina A, Park S, Sharma S, Mir ZA, Lone SA, Bhat AA, Baba U, Mahmoudi H, Bae H. Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12071502. [PMID: 37050128 PMCID: PMC10097182 DOI: 10.3390/plants12071502] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023]
Abstract
Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakeeb A. Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bajhol 173229, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Zahoor A. Mir
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Showkat A. Lone
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Ajaz A. Bhat
- Govt. Degree College for Women, University of Kashmir, Baramulla 193101, India
| | - Uqab Baba
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai P.O. Box 14660, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Liu X, Li W, Wang M, Cao Y, Zhang T, Hu H, Cheng X, Yan Q. Establishment of hairy root system of transgenic IRT1 brassica campestris L. and preliminary study of its effect on cadmium enrichment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1455-1462. [PMID: 36597829 DOI: 10.1080/15226514.2022.2164247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is the main heavy metal pollutant in soil. The combination of genetic engineering technology and Rizobium rhizogenes mediated technology can effectively improve the enrichment efficiency of heavy metals in super accumulators and reduce soil heavy metal pollution. In this study, the transgenic hairy root system containing the IRT1 gene of Cd hyperaccumulator-Brassica campestris L. was successfully constructed by the R. rhizogenes mediated method (IRT1 gene come from Arabidopsis thaliana). The hairy roots of each subculture can grow stably within 6 weeks, and IRT1 gene will not be lost within 50 subcultures., which is detected using PCR method. The results of Cd enrichment experiments showed that after treatment with 100 µmol/L Cd for 14 days, the growth state of transgenic IRT1 hairy roots only showed slight browning. Also, the accumulation value of Cd reached 331.61 µg/g and the enrichment efficiency of transgenic IRT1 hairy roots was 13.8% higher than that of wild-type hairy roots. Western blotting results showed that the expression of IRT1 protein in transgenic hairy roots was significantly higher than that of wild-type hairy roots under Cd stress. The above results indicated that the overexpression of IRT1 gene can help B. campestris L. hairy roots to effectively cope with Cd stress and improve its ability to enrich Cd.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Wenxuan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Menghua Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Yushen Cao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Teng Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Honggang Hu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Qiong Yan
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
4
|
Sharma R, Lenaghan SC. Duckweed: a potential phytosensor for heavy metals. PLANT CELL REPORTS 2022; 41:2231-2243. [PMID: 35980444 DOI: 10.1007/s00299-022-02913-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Globally, heavy metal (HM) contamination is one of the primary causes of environmental pollution leading to decreased quality of life for those affected. In particular, HM contamination in groundwater poses a serious risk to human health and the potential for destabilization of aquatic ecosystems. At present, strategies to remove HM contamination from wastewater are inefficient, costly, laborious, and often the removal poses as much risk to the environment as the initial contamination. Phytoremediation, plant-based removal of contaminants from soil or water, has long been viewed as an economical and sustainable solution to remove toxic metals from the environment. However, to date, phytoremediation has demonstrated limited successes despite a large volume of literature supporting its potential. A key aspect for achieving robust and meaningful phytoremediation is the selection of a plant species that is well suited to the task. For the removal of pollutants from wastewater, hydrophytes, like duckweed, exhibit significant potential due to their rapid growth on nutrient-rich water, ease of collection, and ability to survive in various ecosystems. As a model for ecotoxicity studies, duckweed is an ideal candidate, as it is easy to cultivate under controlled and even sterile conditions, and the rapid growth enables multi-generational studies. Similarly, recent advances in the genetic engineering and genome-editing of duckweed will enable the transition from fundamental ecotoxicity studies to engineered solutions for phytoremediation of HMs. This review will provide insight into the suitability of duckweeds for phytoremediation of HMs and strategies for engineering next-generation duckweed to provide real-world environmental solutions.
Collapse
Affiliation(s)
- Reena Sharma
- Department of Food Science, University of Tennessee, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, TN, 37996, USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, B012 McCord Hall, 2640 Morgan Circle Drive, Knoxville, TN, 37996, USA
| | - Scott C Lenaghan
- Department of Food Science, University of Tennessee, 102 Food Safety and Processing Building 2600 River Dr., Knoxville, TN, 37996, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, B012 McCord Hall, 2640 Morgan Circle Drive, Knoxville, TN, 37996, USA.
| |
Collapse
|
5
|
Macias-Benitez S, Navarro-Torre S, Caballero P, Martín L, Revilla E, Castaño A, Parrado J. Biostimulant Capacity of an Enzymatic Extract From Rice Bran Against Ozone-Induced Damage in Capsicum annum. FRONTIERS IN PLANT SCIENCE 2021; 12:749422. [PMID: 34868133 PMCID: PMC8641545 DOI: 10.3389/fpls.2021.749422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Ozone is a destructive pollutant, damaging crops, and decreasing crop yield. Therefore, there is great interest in finding strategies to alleviate ozone-induced crop losses. In plants, ozone enters leaves through the stomata and is immediately degraded into reactive oxygen species (ROS), producing ROS stress in plants. ROS stress can be controlled by ROS-scavenging systems that include enzymatic or non-enzymatic mechanisms. Our research group has developed a product from rice bran, a by-product of rice milling which has bioactive molecules that act as an antioxidant compound. This product is a water-soluble rice bran enzymatic extract (RBEE) which preserves all the properties and improves the solubility of proteins and the antioxidant components of rice bran. In previous works, the beneficial properties of RBEE have been demonstrated in animals. However, to date, RBEE has not been used as a protective agent against oxidative damage in agricultural fields. The main goal of this study was to investigate the ability of RBEE to be used as a biostimulant by preventing oxidative damage in plants, after ozone exposure. To perform this investigation, pepper plants (Capsicum annuum) exposed to ozone were treated with RBEE. RBEE protected the ozone-induced damage, as revealed by net photosynthetic rate and the content of photosynthetic pigments. RBEE also decreased the induction of antioxidant enzyme activities in leaves (catalase, superoxide dismutase, and ascorbate peroxidase) due to ozone exposure. ROS generation is a common consequence of diverse cellular traumas that also activate the mitogen-activated protein kinase (MAPK) cascade. Thus, it is known that the ozone damages are triggered by the MAPK cascade. To examine the involvement of the MAPK cascade in the ozone damage CaMPK6-1, CaMPK6-2, and CaMKK5 genes were analyzed by qRT-PCR. The results showed the involvement of the MAPK pathway in both, not only in ozone damage but especially in its protection by RBEE. Taken together, these results support that RBEE protects plants against ozone exposure and its use as a new biostimulant could be proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Parrado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
6
|
Rhizoextraction Potential of Convolvulus tricolor Hairy Roots for Cr 6+, Ni 2+, and Pb 2+ Removal from Aqueous Solutions. Appl Biochem Biotechnol 2020; 193:1215-1230. [PMID: 33200266 DOI: 10.1007/s12010-020-03471-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the potential of dwarf morning-glory Convolvulus tricolor (Convolvulaceae) plants and their hairy roots induced by Agrobacterium rhizogenes for rhizoextraction of heavy metals ions from the liquid medium under aseptic growth conditions. Both the young C. tricolor plants and the generated hairy root culture efficiently removed Cr6+, Ni2+, and Pb2+ ions from the liquid cultivation medium. As determined by atomic absorption spectroscopy, the hairy roots demonstrated a high level of heavy metal ions accumulation (μg/g dry weight): 3942 ± 210 of chromium, 1529 ± 312 of nickel, and 2613 ± 373 of lead. These data show that the hairy roots of morning glory might be of interest for some phytoremediation strategies due to their high bioaccumulation abilities. The comparison of bioaccumulation potential of established hairy roots and young C. tricolor plants give grounds to suppose that roots of C. tricolor play an active role in the absorption of Cr6+, Ni2+, and Pb2+ from liquid media, whereas the aboveground part rather serves as a storage for the accumulated metal ions.
Collapse
|
7
|
Pérez-Palacios P, Funes-Pinter I, Agostini E, Talano MA, Ibáñez SG, Humphry M, Edwards K, Rodríguez-Llorente ID, Caviedes MA, Pajuelo E. Targeting Acr3 from Ensifer medicae to the plasma membrane or to the tonoplast of tobacco hairy roots allows arsenic extrusion or improved accumulation. Effect of acr3 expression on the root transcriptome. Metallomics 2019; 11:1864-1886. [PMID: 31588944 DOI: 10.1039/c9mt00191c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transgenic tobacco hairy roots expressing the bacterial arsenite efflux pump Acr3 from Ensifer medicae were generated. The gene product was targeted either to the plasma membrane (ACR3 lines) or to the tonoplast by fusing the ACR3 protein to the tonoplast integral protein TIP1.1 (TIP-ACR3 lines). Roots expressing Acr3 at the tonoplast showed greater biomass than those expressing Acr3 at the plasma membrane. Furthermore, higher contents of malondialdehyde (MDA) and RNA degradation in ACR3 lines were indicative of higher oxidative stress. The determination of ROS-scavenging enzymes depicted the transient role of peroxidases in ROS detoxification, followed by the action of superoxide dismutase during both short- and medium-term exposure periods. Regarding As accumulation, ACR3 lines accumulated up to 20-30% less As, whereas TIP-ACR3 achieved a 2-fold increase in As accumulation in comparison to control hairy roots. Strategies that presumably induce As uptake, such as phosphate deprivation or dehydration followed by rehydration in the presence of As, fostered As accumulation up to 10 800 μg g-1. Finally, the effects of the heterologous expression of acr3 on the root transcriptome were assessed. Expression at the plasma membrane induced drastic changes in gene expression, with outstanding overexpression of genes related to electron transport, ATP synthesis and ATPases, suggesting that As efflux is the main detoxification mechanism in these lines. In addition, genes encoding heat shock proteins and those related to proline synthesis and drought tolerance were activated. On the other hand, TIP-ACR3 lines showed a similar gene expression profile to that of control roots, with overexpression of the glutathione and phytochelatin synthesis pathways, together with secondary metabolism pathways as the most important resistance mechanisms in TIP-ACR3, for which As allocation into the vacuole allowed better growth and stress management. Our results suggest that modulation of As accumulation can be achieved by subcellular targeting of Acr3: expression at the tonoplast enhances As accumulation in roots, whereas expression at the plasma membrane could promote As efflux. Thus, both approaches open the possibilities for developing safer crops when grown on As-polluted paddy soils, but expression at the tonoplast leads to better growth and less stressed roots, since the high energy cost of As efflux likely compromises growth in ACR3 lines.
Collapse
Affiliation(s)
- Patricia Pérez-Palacios
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain. and Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina and Plant Biotechnology Division, British American Tobacco, Cambridge, CB4 0WA, UK
| | - Iván Funes-Pinter
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain. and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza (CP 5507), Atte Brown 500, Chacras de Coria, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina
| | - Melina A Talano
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta Nacional 36 - Km. 601 - Río Cuarto, Córdoba, Argentina
| | - Sabrina G Ibáñez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Matt Humphry
- British American Tobacco (Investments) Ltd, Cambridge, CB4 0WA, UK
| | - Kieron Edwards
- Plant Biotechnology Division, British American Tobacco, Cambridge, CB4 0WA, UK
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| | - Miguel A Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012-Sevilla, Spain.
| |
Collapse
|
8
|
Safe Cultivation of Medicago sativa in Metal-Polluted Soils from Semi-Arid Regions Assisted by Heat- and Metallo-Resistant PGPR. Microorganisms 2019; 7:microorganisms7070212. [PMID: 31336693 PMCID: PMC6680742 DOI: 10.3390/microorganisms7070212] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
Soil contamination with heavy metals is a constraint for plant establishment and development for which phytoremediation may be a solution, since rhizobacteria may alleviate plant stress under these conditions. A greenhouse experiment was conducted to elucidate the effect of toxic metals on growth, the activities of ROS (reactive oxygen species)-scavenging enzymes, and gene expression of Medicago sativa grown under different metal and/or inoculation treatments. The results showed that, besides reducing biomass, heavy metals negatively affected physiological parameters such as chlorophyll fluorescence and gas exchange, while increasing ROS-scavenging enzyme activities. Inoculation of M. sativa with a bacterial consortium of heat- and metallo-resistant bacteria alleviated metal stress, as deduced from the improvement of growth, lower levels of antioxidant enzymes, and increased physiological parameters. The bacteria were able to effectively colonize and form biofilms onto the roots of plants cultivated in the presence of metals, as observed by scanning electron microscopy. Results also evidenced the important role of glutathione reductase (GR), phytochelatin synthase (PCS), and metal transporter NRAMP1 genes as pathways for metal stress management, whereas the gene coding for cytochrome P450 (CP450) seemed to be regulated by the presence of the bacteria. These outcomes showed that the interaction of metal-resistant rhizobacteria/legumes can be used as an instrument to remediate metal-contaminated soils, while cultivation of inoculated legumes on these soils is still safe for animal grazing, since inoculation with bacteria diminished the concentrations of heavy metals accumulated in the aboveground parts of the plants to below toxic levels.
Collapse
|
9
|
Bisht N, Tiwari S, Singh PC, Niranjan A, Singh Chauhan P. A multifaceted rhizobacterium Paenibacillus lentimorbus alleviates nutrient deficiency-induced stress in Cicer arietinum L. Microbiol Res 2019; 223-225:110-119. [PMID: 31178043 DOI: 10.1016/j.micres.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 11/30/2022]
Abstract
Nutrient deficiency in soil is one of the limiting factors responsible for stunted growth and poor flowering/fruiting of crops which result in decline in overall agricultural productivity. However, one important strategy to overcome the problem of nutrient deficiency and to avoid use of chemical fertilizers is the use of plant growth promoting rhizobacteria (PGPR). Paenibacillus lentimorbus NRRL B-30488 (hereafter B-30488), an efficient PGPR has been reported to have various plant growth promoting traits that help crops to mitigate various environmental stresses. Therefore, the present work was designed to examine the application of B-30488 on chickpea growth under nutrient stress condition. Plants inoculated with B-30488 showed positive modulation in physio-biochemical behaviour and mineral nutrient uptake for better growth and development. Alteration in gene expression and metabolic profile under nutrient stress condition in chickpea also supported the stress amelioration capability of B-30488. Principal component analysis statistically proved that improved growth performance of chickpea plants under nutrient stress was mainly due to B-30488 induced modulation of metabolic pathways. To the best of our knowledge, this is the first study for analysis of growth promotion and stress alleviation in chickpea plants subjected to nutrient stress in presence of PGPR B-30488.
Collapse
Affiliation(s)
- Nikita Bisht
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Shalini Tiwari
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Poonam C Singh
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Abhishek Niranjan
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.
| |
Collapse
|
10
|
Paredes-Páliz K, Rodríguez-Vázquez R, Duarte B, Caviedes MA, Mateos-Naranjo E, Redondo-Gómez S, Caçador MI, Rodríguez-Llorente ID, Pajuelo E. Investigating the mechanisms underlying phytoprotection by plant growth-promoting rhizobacteria in Spartina densiflora under metal stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:497-506. [PMID: 29350476 DOI: 10.1111/plb.12693] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/12/2018] [Indexed: 05/24/2023]
Abstract
Pollution of coasts by toxic metals and metalloids is a worldwide problem for which phytoremediation using halophytes and associated microbiomes is becoming relevant. Metal(loid) excess is a constraint for plant establishment and development, and plant growth promoting rhizobacteria (PGPR) mitigate plant stress under these conditions. However, mechanisms underlying this effect remain elusive. The effect of toxic metal(loid)s on activity and gene expression of ROS-scavenging enzymes in roots of the halophyte Spartina densiflora grown on real polluted sediments in a greenhouse experiment was investigated. Sediments of the metal-polluted joint estuary of Tinto and Odiel rivers and control, unpollutred samples from the Piedras estuary were collected and submitted to ICP-OES. Seeds of S. densiflora were collected from the polluted Odiel marshes and grown in polluted and unpolluted sediments. Rhizophere biofilm-forming bacteria were selected based on metal tolerance and inoculated to S. densiflora and grown for 4 months. Fresh or frozen harvested plants were used for enzyme assays and gene expression studies, respectively. Metal excess induced SOD (five-fold increase), whereas CAT and ascorbate peroxidase displayed minor induction (twofold). A twofold increase of TBARs indicated membrane damage. Our results showed that metal-resistant PGPR (P. agglomerans RSO6 and RSO7 and B. aryabhattai RSO25) contributed to alleviate metal stress, as deduced from lower levels of all antioxidant enzymes to levels below those of non-exposed plants. The oxidative stress index (OSI) decreased between 50 and 75% upon inoculation. The results also evidenced the important role of PAL, involved in secondary metabolism and/or lignin synthesis, as a pathway for metal stress management in this halophyte upon inoculation with appropriate PGPR, since the different inoculation treatments enhanced PAL expression between 3.75- and five-fold. Our data confirm, at the molecular level, the role of PGPR in alleviating metal stress in S. densiflora and evidence the difficulty of working with halophytes for which little genetic information is available.
Collapse
Affiliation(s)
- K Paredes-Páliz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - R Rodríguez-Vázquez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - B Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - M A Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - E Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - S Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - M I Caçador
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - I D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - E Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
11
|
Yu X, Luo Q, Huang K, Yang G, He G. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:326. [PMID: 29599791 PMCID: PMC5862831 DOI: 10.3389/fpls.2018.00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/27/2018] [Indexed: 05/26/2023]
Abstract
Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper.
Collapse
Affiliation(s)
- Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Kaixun Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
12
|
Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. PLANT BIOTECHNOLOGY REPORTS 2018; 12:1-14. [PMID: 29503668 PMCID: PMC5829118 DOI: 10.1007/s11816-017-0467-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/18/2017] [Indexed: 05/18/2023]
Abstract
Avoidance and reduction of soil contamination with heavy metals is one of the most serious global challenges. Nowadays, science offers us new opportunities of utilizing plants to extract toxic elements from the soil by means of phytoremediation. Plant abilities to uptake, translocate, and transform heavy metals, as well as to limit their toxicity, may be significantly enhanced via genetic engineering. This paper provides a comprehensive review of recent strategies aimed at the improvement of plant phytoremediation potential using plant transformation and employing current achievements in nuclear and cytoplasmic genome transformation. Strategies for obtaining plants suitable for effective soil clean-up and tolerant to excessive concentrations of heavy metals are critically assessed. Promising directions in genetic manipulations, such as gene silencing and cis- and intragenesis, are also discussed. Moreover, the ways of overcoming disadvantages of phytoremediation using genetic transformation approachare proposed. The knowledge gathered here could be useful for designing new research aimed at biotechnological improvement of phytoremediation efficiency.
Collapse
Affiliation(s)
- Aleksandra Koźmińska
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Alina Wiszniewska
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Ewa Hanus-Fajerska
- Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland
| |
Collapse
|