1
|
Mansur AAP, Carvalho SM, Brito RMDM, Capanema NSV, Duval IDB, Cardozo ME, Rihs JBR, Lemos GGM, Lima LCD, dos Reys MP, Rodrigues APH, Oliveira LCA, de Sá MA, Cassali GD, Bueno LL, Fujiwara RT, Lobato ZIP, Mansur HS. Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose-Chitosan-Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing. Gels 2024; 10:679. [PMID: 39590035 PMCID: PMC11594054 DOI: 10.3390/gels10110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion. They were applied as bilayer skin biomimetic substitutes based on human-derived cell cultures of fibroblasts and keratinocytes were seeded and grown into their 3D porous structures, producing cell-based bio-responsive hybrid hydrogel scaffolds to assist the wound healing process. The results demonstrated that hydrophilic hybrid cross-linked networks were formed via esterification reactions with the 3D porous microarchitecture promoted by foam templating and freeze-drying. These hybrids presented chemical stability, physicochemical properties, high moisture adsorption capacity, surface properties, and a highly interconnected 3D porous structure well suited for use as a skin substitute in wound healing. Additionally, the surface biofunctionalization of these 3D hydrogel scaffolds with L-arginine through amide bonds had significantly enhanced cellular attachment and proliferation of fibroblast and keratinocyte cultures. Hence, the in vivo results using Hairless mouse models (an immunocompromised strain) confirmed that these responsive bio-hybrid hydrogel scaffolds possess hemocompatibility, bioadhesion, biocompatibility, adhesiveness, biodegradability, and non-inflammatory behavior and are capable of assisting the skin wound healing process.
Collapse
Affiliation(s)
- Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Ramayana M. de M. Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Isabela de B. Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Marcelo E. Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - José B. R. Rihs
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Gabriela G. M. Lemos
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Marina P. dos Reys
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Ana P. H. Rodrigues
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Luiz C. A. Oliveira
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Geovanni D. Cassali
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Lilian L. Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Ricardo T. Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil;
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| |
Collapse
|
2
|
Shan Z, Huang J, Huang Y, Zhou Y, Li Y. Glutaraldehyde crosslinked ternary carboxymethylcellulose/polyvinyl alcohol/polyethyleneimine film with enhanced mechanical properties, water resistance, antibacterial activity, and UV-shielding ability without any UV absorbents. Int J Biol Macromol 2024; 277:134563. [PMID: 39116969 DOI: 10.1016/j.ijbiomac.2024.134563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Despite the plethora of methods reported for fabricating ultraviolet (UV) shielding films using various UV absorbers to date, it remains a major challenge for the development of novel UV shielding films that simultaneously exhibit excellent transparency. In this work, a novel composite film (GA-x-CMC/PVA/PEI) is fabricated by integrating anionic carboxymethylcellulose (CMC), cationic polyethyleneimine (PEI), and polyvinyl alcohol (PVA) via electrostatic and hydrogen bond interactions and further cross-linking with glutaraldehyde (GA). Herein, PVA expands hydrogen bonding networks, reduces film haze, and enhances its mechanical strength. GA acts as a crosslinker in producing Schiff bases with PEI and acetals with CMC and PVA. The synthesized GA-x-CMC/PVA/PEI composite film possesses a notable amount of unsaturated -CH=N- bonds of Schiff base, resulting from the condensation of PEI and GA, which exhibit superior shielding efficiency against both UV-A and UV-B rays while maintaining exceptional transparency, visibility, and simultaneously enhancing mechanical properties and thermal stability. Notably, increasing the content of PEI leads to almost complete shielding of the entire UV spectrum (<400 nm) due to the increasing of the number of -CH=N- unsaturated bonds. Furthermore, the obtained film without any UV-shielding additives has exceptional mechanical properties, hydrophobicity, and antibacterial properties, rendering it a wide application prospect.
Collapse
Affiliation(s)
- Zhihao Shan
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Jiayi Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yuling Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yuping Zhou
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yiqun Li
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
3
|
Akhtar MS, Ali S, Zaman W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024; 29:4317. [PMID: 39339312 PMCID: PMC11433758 DOI: 10.3390/molecules29184317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The growing presence of diverse pollutants, including heavy metals, organic compounds, pharmaceuticals, and emerging contaminants, poses significant environmental and health risks. Traditional methods for pollutant removal often face limitations in efficiency, selectivity, and sustainability. This review provides a comprehensive analysis of recent advancements in innovative adsorbents designed to address these challenges. It explores a wide array of non-conventional adsorbent materials, such as nanocellulose, metal-organic frameworks (MOFs), graphene-based composites, and biochar, emphasizing their sources, structural characteristics, and unique adsorption mechanisms. The review discusses adsorption processes, including the basic principles, kinetics, isotherms, and the factors influencing adsorption efficiency. It highlights the superior performance of these materials in removing specific pollutants across various environmental settings. The practical applications of these adsorbents are further explored through case studies in industrial settings, pilot studies, and field trials, showcasing their real-world effectiveness. Additionally, the review critically examines the economic considerations, technical challenges, and environmental impacts associated with these adsorbents, offering a balanced perspective on their viability and sustainability. The conclusion emphasizes future research directions, focusing on the development of scalable production methods, enhanced material stability, and sustainable regeneration techniques. This comprehensive assessment underscores the transformative potential of innovative adsorbents in pollutant remediation and their critical role in advancing environmental protection.
Collapse
Affiliation(s)
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Aristizabal Y, Ciro Y, Liscano Y, Salamanca CH, Oñate-Garzón J. Biopolymers as a Potential Alternative for the Retention of Pollutants from Vinasse: An In Silico Approach. Polymers (Basel) 2023; 16:11. [PMID: 38201676 PMCID: PMC10780775 DOI: 10.3390/polym16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Vinasse, a waste from the bioethanol industry, presents a crucial environmental challenge due to its high organic matter content, which is difficult to biodegrade. Currently, no sustainable alternatives are available for treating the amount of vinasse generated. Conversely, biopolymers such as cellulose, carboxymethylcellulose, and chitosan are emerging as an interesting alternative for vinasse control due to their flocculating capacity against several organic compounds. This study seeks to determine the thermodynamic behavior of in silico interactions among three biopolymers (cellulose, carboxymethylcellulose, and chitosan) regarding 15 organic compounds found in vinasse. For this, the Particle Mesh Ewald (PME) method was used in association with the Verlet cutoff scheme, wherein the Gibbs free energy (ΔG) was calculated over a 50 ns simulation period. The findings revealed that cellulose showed a strong affinity for flavonoids like cyanidin, with a maximum free energy of -84 kJ/mol and a minimum of -55 kJ/mol observed with phenolic acids and other flavonoids. In contrast, chitosan displayed the highest interactions with phenolic acids, such as gallic acid, reaching -590 kJ/mol. However, with 3-methoxy-4-hydroxyphenyl glycol (MHPG), it reached an energy of -70 kJ/mol. The interaction energy for flavonoid ranged from -105 to -96 kJ/mol. Finally, carboxymethylcellulose (CMC) demonstrated an interaction energy with isoquercetin of -238 kJ/mol, while interactions with other flavonoids were almost negligible. Alternatively, CMC exhibited an interaction energy of -124 kJ/mol with MHPG, while it was less favorable with other phenolic acids with minimal interactions. These results suggest that there are favorable interactions for the interfacial sorption of vinasse contaminants onto biopolymers, indicating their potential for use in the removal of contaminants from the effluents of the bioethanol industry.
Collapse
Affiliation(s)
- Yesid Aristizabal
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (Y.C.)
| | - Yhors Ciro
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (Y.C.)
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Constain H. Salamanca
- Grupo de Investigación Ciencia de Materiales Avanzados, Escuela de Química, Facultad de Ciencias, Universidad Nacional de Colombia sede Medellín, Medellín 050034, Colombia
- Grupo de Investigación Biopolimer, Departamento de Farmacia, Facultas de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 67 #53-108, Medellín 050034, Colombia
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali 760035, Colombia; (Y.A.); (Y.C.)
| |
Collapse
|
5
|
Chen R, Yang S, Liu B, Liao Y. Eco-Friendly Semi-Interpenetrating Polymer Network Hydrogels of Sodium Carboxymethyl Cellulose/Gelatin for Methylene Blue Removal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093385. [PMID: 37176265 PMCID: PMC10180506 DOI: 10.3390/ma16093385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The present work describes the potential application of environmentally friendly sodium carboxymethylcellulose/gelatin (CMC/Gel) semi-interpenetrating hydrogels prepared by citric acid as a nontoxic cross-linking agent to adsorb dyes. The prepared hydrogels were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA/DTG), and swelling study. The adsorption performance of CMC/Gel2 (C/G2) hydrogel on methylene blue (MB) was investigated. The results showed the better adsorption conditions: adsorption time of 300 min, initial MB concentration of 500 mg/L, adsorbent dosage of 1.2 g/L, solution pH of 7, and temperature of 30 °C. The adsorption kinetics fit the pseudo-second order kinetics model, and the adsorption isotherm fit the Langmuir isotherm model. The maximum adsorption capacity reached 943.40 mg/g. The adsorption process is a spontaneous exothermic process. After three adsorption-desorption cycles, the removal rate of MB by hydrogel still reached 85%, with good reusability. Consequently, the hydrogel can be used as an environmentally friendly, stable, and efficient adsorbent for dyes in wastewater treatment.
Collapse
Affiliation(s)
- Rongbin Chen
- Engineering Research Center of Biotechnology of Active Materials (Ministry of Education), College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Shanbin Yang
- Engineering Research Center of Biotechnology of Active Materials (Ministry of Education), College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Bing Liu
- Engineering Research Center of Biotechnology of Active Materials (Ministry of Education), College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Youlin Liao
- Engineering Research Center of Biotechnology of Active Materials (Ministry of Education), College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
6
|
Magnetite graphene oxide-doped superadsorbent hydrogel for efficient removal of crystal violet from wastewater. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Saad S, Dávila I, Morales A, Labidi J, Moussaoui Y. Cross-Linked Carboxymethylcellulose Adsorbtion Membranes from Ziziphus lotus for the Removal of Organic Dye Pollutants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8760. [PMID: 36556565 PMCID: PMC9785501 DOI: 10.3390/ma15248760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The goal of this study is to assess Ziziphus lotus's potential for producing carboxymethylcellulose adsorption membranes with the ability to adsorb methyl green from wastewaters by the revalorization of its cellulosic fraction. The cellulose from this feedstock was extracted by an alkaline process and TAPPI standard technique T 203 cm-99 and afterwards they were carboxymethylated. The obtained carboxymethylcelluloses were deeply characterized, being observed that the carboxymethylcellulose produced from the alkaline cellulose presented the higher solubility due to its lower crystallinity degree (53.31 vs. 59.4%) and its higher substitution degree (0.85 vs. 0.74). This carboxymethylcellulose was cross-linked with citric acid in an aqueous treatment in order to form an adsorption membrane. The citric acid provided rigidity to the membrane and although it was hydrophilic it was not soluble in water. By evaluating the potential of the produced membrane for the removal of pollutant dyes from wastewater, it was observed that the adsorption membrane prepared from the carboxymethylcellulose's produced from the Ziziphus lotus was able to remove 99% of the dye, methyl green, present in the wastewater. Thus, this work demonstrates the potential of the Ziziphus lotus for the production of a novel and cost-effective carboxymethylcellulose adsorption membrane with high capacity to treat wastewaters.
Collapse
Affiliation(s)
- Sara Saad
- Laboratory for the Application of Materials to the Environment, Water and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Izaskun Dávila
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Calle Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain
| | - Amaia Morales
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU Plaza Europa 1, 20018 San Sebastián, Spain
| | - Younes Moussaoui
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
8
|
Kotp YH. Fabrication of cerium titanate cellulose fiber nanocomposite materials for the removal of methyl orange and methylene blue from polluted water by photocatalytic degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81583-81608. [PMID: 35739439 PMCID: PMC9606103 DOI: 10.1007/s11356-022-21430-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, cellulose fibers (Cf), extracted from sunflower seed husk, and different molar ratios of cerium titanate (Ce-Ti) NPs were prepared from sunflower seed husk extract by a green biosynthesis approach. Cf and Ce-Ti NPs were reacted via cross-linking reaction to synthesize a novel nanocomposite photocatalyst of Ce-Ti/Cf. Using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM-EDX) spectroscopy, all manufactured materials were characterized. The results obtained from FTIR and EDX analyses indicated that Cf and its nanocomposites (0.1 Ce-Ti/Cf, 0.3 Ce-Ti/Cf, and 0.5 Ce-Ti/Cf) were successfully prepared by harnessing biomass extract from sunflower seed husk. Furthermore, XRD revealed that the degree of crystallinity of the nanocomposites was enhanced by increasing the molar ratios of the Ce-Ti NPs. The photocatalytic activity of as-fabricated 0.1 Ce-Ti/Cf, 0.3 Ce-Ti/Cf, and 0.5 Ce-Ti/Cf nanocomposite samples was investigated on methylene blue (MB) and methyl orange (MO) dyes as model organic compounds found in wastewaters. The effects of dose, contact time, and pH on the photocatalytic activity of the synthesized nanocomposites, the photodegradation kinetic parameters of MB, and MO degradation with/without the addition of H2O2 were also studied. The results revealed that high photodegradation efficiency could be obtained as the ratio of TiO2 in the Ce-Ti nanocomposite formula increases. Moreover, after sunlight irradiation, the adsorption capacity and the dye decomposition ratio significantly increase during the early contact time and reach equilibrium at about 240 and 120 min for 0.5 Ce-Ti/Cf nanocomposite photocatalyst in the absence and presence of hydrogen peroxide, respectively. In light of the obtained results and the practical wastewater treatment study conducted, the prepared photocatalyst from Ce-Ti/Cf nanocomposites could be a promising material for treating dye wastewater especially collected from Egypt.
Collapse
Affiliation(s)
- Yousra H Kotp
- Water Treatment & Desalination Unit, Hydrogeochemistry Department, Desert Research Center, El-Matariya, Cairo, B 11753, Egypt.
| |
Collapse
|
9
|
Polymeric Hydrogel for Removing Water Pollutants: Optimizing Synthesis Conditions and Investigating Antibacterial Activity. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Characterization and Evaluation of Commercial Carboxymethyl Cellulose Potential as an Active Ingredient for Cosmetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carboxymethyl cellulose is the most used water-soluble cellulose with applications in industries such as food, cosmetics, and tissue engineering. However, due to a perceived lack of biological activity, carboxymethyl cellulose is mostly used as a structural element. As such, this work sought to investigate whether CMC possesses relevant biological properties that could grant it added value as a cosmeceutical ingredient in future skincare formulations. To that end, CMC samples (Mw between 471 and 322 kDa) skin cell cytotoxicity, impact upon pro-collagen I α I production, and inflammatory response were evaluated. Results showed that samples were not cytotoxic towards HaCat and HDFa up to 10 mg/mL while simultaneously promoting intracellular production of pro-collagen I α I up by 228% relative to the basal metabolism, which appeared to be related to the highest DS and Mw. Additionally, CMC samples modulated HaCat immune response as they decreased by ca. 1.4-fold IL-8 production and increased IL-6 levels by ca. five fold. Despite this increase, only two samples presented IL-6 levels similar to those of the inflammation control. Considering these results, CMC showed potential to be a more natural alternative to traditional bioactive cosmetic ingredients and, as it is capable of being a bioactive and structural ingredient, it may play a key role in future skincare formulations.
Collapse
|
11
|
Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23105444. [PMID: 35628254 PMCID: PMC9141772 DOI: 10.3390/ijms23105444] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Electrospun nanofibers are promising bone tissue scaffolds that support bone healing due to the body’s structural similarity to the extracellular matrix (ECM). However, the insufficient mechanical properties often limit their potential in bone tissue regeneration. Cross-linking agents that chemically interconnect as-spun electrospun nanofibers are a simple but effective strategy for improving electrospun nanofibers’ mechanical, biological, and degradation properties. To improve the mechanical characteristic of the nanofibrous bone scaffolds, two of the most common types of cross-linking agents are used to chemically crosslink electrospun nanofibers: synthetic and natural. Glutaraldehyde (GTA) is a typical synthetic agent for electrospun nanofibers, while genipin (GP) is a natural cross-linking agent isolated from gardenia fruit extracts. GP has gradually gained attention since GP has superior biocompatibility to synthetic ones. In recent studies, much more progress has been made in utilizing crosslinking strategies, including citric acid (CA), a natural cross-linking agent. This review summarizes both cross-linking agents commonly used to improve electrospun-based scaffolds in bone tissue engineering, explains recent progress, and attempts to expand the potential of this straightforward method for electrospinning-based bone tissue engineering.
Collapse
|
12
|
Liu YX, Zhong H, Li XR, Bao ZL, Cheng ZP, Zhang YJ, Li CX. Fabrication of attapulgite-based dual responsive composite hydrogel and its efficient adsorption for methyl violet. ENVIRONMENTAL TECHNOLOGY 2022; 43:1480-1492. [PMID: 33070707 DOI: 10.1080/09593330.2020.1838623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In this work, attapulgite (ATP)-based dual sensitive poly (N-isopropylacrylamide-co-acrylic acid) composite hydrogel, P(NIPAM-co-AA)/ATP, was prepared by free radical polymerization. The prepared composite hydrogel was characterized via methods of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), zeta potential analysis and Brunauer, Emmett, and Teller (BET) etc. The composite hydrogel showed pH and temperature sensitive behaviour, with lower critical solution temperature (LCST) of 35°C and highest swelling occurred at pH 8.0. The adsorption of methyl violet (MV) can be controlled by the hydrogel responsiveness, and 95.78% of MV can be removed at pH 8.0 and 35°C. The addition of a small amount of ATP (3 Wt%) can improve the swelling ratio and adsorption capacity. Kinetic analysis demonstrated that the experimental data were best fitted to the pseudo-second order model. Isotherm analysis showed that the equilibrium data followed Langmuir model with the adsorption capacity of 168.35 mg g-1. In addition, the composite hydrogel has high adsorption selectivity for cationic dyes, and MV-loaded hydrogel is easy to regenerate, which can be used for successive adsorption cycles. These results demonstrate that the composite hydrogel has potential application in dye wastewater treatment.
Collapse
Affiliation(s)
- Yi-Xin Liu
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Hui Zhong
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Xiao-Rong Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhuan-Li Bao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Zhi-Peng Cheng
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Yu-Jie Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian, People's Republic of China
| | - Chun-Xiang Li
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
13
|
Khairunnisa-Atiqah MK, Salleh KM, Ainul Hafiza AH, Nyak Mazlan NS, Mostapha M, Zakaria S. Impact of Drying Regimes and Different Coating Layers on Carboxymethyl Cellulose Cross-Linked with Citric Acid on Cotton Thread Fibers for Wound Dressing Modification. Polymers (Basel) 2022; 14:polym14061217. [PMID: 35335548 PMCID: PMC8949679 DOI: 10.3390/polym14061217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
The oldest preservation techniques used are drying techniques, which are employed to remove moisture and prevent microorganisms’ growths, prolonging a material’s shelf life. This study evaluates the effects of drying methods on carboxymethyl cellulose (CMC) + citric acid (CA) coating layers on cotton threads. For this reason, cotton threads were washed and then coated with different layers of CMC cross-linked with CA, followed by drying using an oven (OD), infrared (IR), and a combination of oven + IR (OIR) drying methods at 65 °C. Our investigations revealed that CMC + CA yields a pliable biopolymer. The differences in drying regimes and coating layers of CMC + CA have a significant effect on the coated cotton thread strength and absorption capability. The study concluded that the IR drying regime is more effective to dry a single-layered cotton thread with a single layer of CMC + CA coating to enhance desirable properties for wound dressing modification.
Collapse
Affiliation(s)
- Mohamad Khalid Khairunnisa-Atiqah
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.K.K.-A.); (A.H.A.H.); (N.S.N.M.)
| | - Kushairi Mohd Salleh
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.K.K.-A.); (A.H.A.H.); (N.S.N.M.)
- Correspondence: authors: (K.M.S.); (S.Z.)
| | - A. H. Ainul Hafiza
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.K.K.-A.); (A.H.A.H.); (N.S.N.M.)
- Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia
| | - Nyak Syazwani Nyak Mazlan
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.K.K.-A.); (A.H.A.H.); (N.S.N.M.)
| | - Marhaini Mostapha
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia;
| | - Sarani Zakaria
- Bioresources and Biorefinery Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.K.K.-A.); (A.H.A.H.); (N.S.N.M.)
- Correspondence: authors: (K.M.S.); (S.Z.)
| |
Collapse
|
14
|
Naeini AH, Kalaee M, Moradi O, Khajavi R, Abdouss M. Eco-friendly inorganic-organic bionanocomposite (Copper oxide — Carboxyl methyl cellulose — Guar gum): Preparation and effective removal of dye from aqueous solution. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
15
|
Darvishi R, Moghadas H, Moshkriz A. Oxidized gum arabic cross-linked pectin/O-carboxymethyl chitosan: An antibiotic adsorbent hydrogel. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Aljar MAA, Rashdan S, Abd El-Fattah A. Environmentally Friendly Polyvinyl Alcohol-Alginate/Bentonite Semi-Interpenetrating Polymer Network Nanocomposite Hydrogel Beads as an Efficient Adsorbent for the Removal of Methylene Blue from Aqueous Solution. Polymers (Basel) 2021; 13:4000. [PMID: 34833299 PMCID: PMC8618515 DOI: 10.3390/polym13224000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Hazardous chemicals like toxic organic dyes are very harmful to the environment and their removal is quite challenging. Therefore there is a necessity to develop techniques, which are environment friendly, cost-effective and easily available in nature for water purification and remediation. The present research work is focused on the development` and characterization of the ecofriendly semi-interpenetrating polymer network (semi-IPN) nanocomposite hydrogels composed of polyvinyl alcohol (PVA) and alginate (Alg) hydrogel beads incorporating natural bentonite (Bent) clay as a beneficial adsorbent for the removal of toxic methylene blue (MB) from aqueous solution. PVA-Alg/Bent nanocomposite hydrogel beads with different Bent content (0, 10, 20, and 30 wt%) were synthesized via external ionic gelation method. The designed porous and steady structure beads were characterized by the use of Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The performance of the beads as MB adsorbents was investigated by treating aqueous solutions in batch mode. The experimental results indicated that the incorporation of Bent (30 wt%) in the nanocomposite formulation sustained the porous structure, preserved water uptake, and increased MB removal efficiency by 230% compared to empty beads. Designed beads possessed higher affinity to MB at high pH 8, 30 °C, and fitted well to pseudo-second-order kinetic model with a high correlation coefficient. Moreover, the designed beads had good stability and reusability as they exhibited excellent removal efficiency (90%) after six consecutive adsorption-desorption cycles. The adsorption process was found be combination of both monolayer adsorption on homogeneous surface and multilayer adsorption on heterogeneous surface. The maximum adsorption capacity of the designed beads system as calculated by Langmuir isotherm was found to be 51.34 mg/g, which is in good agreement with the reported clay-related adsorbents. The designed semi-IPN PVA-Alg/Bent nanocomposite hydrogel beads demonstrated good adsorbent properties and could be potentially used for MB removal from polluted water.
Collapse
Affiliation(s)
- Mona A. Aziz Aljar
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain; (M.A.A.A.); (S.R.)
| | - Suad Rashdan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain; (M.A.A.A.); (S.R.)
| | - Ahmed Abd El-Fattah
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box 32038, Bahrain; (M.A.A.A.); (S.R.)
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
17
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
18
|
Indurkar A, Pandit A, Jain R, Dandekar P. Plant based cross-linkers for tissue engineering applications. J Biomater Appl 2020; 36:76-94. [PMID: 33342347 DOI: 10.1177/0885328220979273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Utility of plant-based materials in tissue engineering has exponentially increased over the years. Recent efforts in this area have been focused on substituting synthetic cross-linkers with natural ones derived from biological sources. These cross-linkers are essentially derived from the vegetative components of plants therefore suitably categorised as 'green' and renewable materials. Utilization of plant based cross-linkers in scaffolds and hydrogels offers several advantages compared to the synthetic ones. Natural compounds, like ferulic acid and genipin, when incorporated into scaffolds can promote cellular proliferation and growth, by regulation of growth factors. They participate in crucial activities, thus providing impetus for cell growth, function, differentiation and angiogenesis. Several natural compounds inherently possess anti-microbial, antioxidant and anti-inflammatory effects, which enhance the inherent characteristics of the scaffolds. Versatility of natural cross-linkers can be exploited for diverse applications. Integrating such potent molecules can enable the scaffold to display relevant characteristics for each function. This review article focuses on the recent developments with plant based cross-linkers that are employed for scaffold synthesis and their applications, which may be explored to synthesize scaffolds suitable for diverse biomedical applications.
Collapse
Affiliation(s)
- Abhishek Indurkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ashish Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
19
|
Malatji N, Makhado E, Ramohlola KE, Modibane KD, Maponya TC, Monama GR, Hato MJ. Synthesis and characterization of magnetic clay-based carboxymethyl cellulose-acrylic acid hydrogel nanocomposite for methylene blue dye removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44089-44105. [PMID: 32761344 DOI: 10.1007/s11356-020-10166-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Carboxymethyl cellulose/poly(acrylic acid) (CMC-cl-pAA) hydrogel and its magnetic hydrogel nanocomposite (CMC-cl-pAA/Fe3O4-C30B) were prepared via a free radical polymerization method and used as adsorbents for adsorption of methylene blue (MB) dye. The samples were characterized using Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy coupled with energy-dispersive X-ray spectrometer, high-resolution transmission electron microscope, and dynamic mechanical analysis. The adsorption performance of the prepared adsorbents was studied in a batch mode. Adsorption kinetics and isotherm models were applied in the experimental data to evaluate the nature as well as the mechanism of adsorption processes. It was deduced that the adsorption followed the pseudo-second-order rate equation and Langmuir isotherm models. The maximum adsorption capacities were found to be 1109.55 and 1081.60 mg/g for CMC-cl-pAA hydrogel and CMC-cl-pAA/Fe3O4-C30B hydrogel nanocomposite, respectively. The adsorption thermodynamic studies suggested that the adsorption process was spontaneous and endothermic for CMC-cl-pAA/Fe3O4-C30B hydrogel nanocomposite. The homogeneous dispersion of the Fe3O4-C30B nanocomposite in the CMC-cl-pAA hydrogel significantly improved the thermal stability, mechanical strength, and excellent regeneration stability. This study demonstrates the application potential of the fascinating properties of CMC-cl-pAA/Fe3O4-C30B hydrogel nanocomposite as a highly efficient adsorbent in the removal of organic dyes from aqueous solution.
Collapse
Affiliation(s)
- Nompumelelo Malatji
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Edwin Makhado
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa.
| | - Kabelo Edmond Ramohlola
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Kwena Desmond Modibane
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa.
| | - Thabiso Carol Maponya
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Gobeng Release Monama
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa
| | - Mpitloane Joseph Hato
- Nanotechnology Research Lab, Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Sovenga, 0727, Polokwane, South Africa.
| |
Collapse
|
20
|
Güben E, Arıcı Ş, Bayır D, Bozdağ E, Ege D. Preparation of calcium phosphate/carboxymethylcellulose-based bone cements. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Esra Güben
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Şule Arıcı
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Dilara Bayır
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ergün Bozdağ
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Duygu Ege
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
21
|
Kampaengsri S, Wanno B, Tuntulani T, Pulpoka B, Kaewtong C. Gold sensing with rhodamine immobilized hydrogel-based colorimetric sensor. ENVIRONMENTAL TECHNOLOGY 2020; 41:3016-3022. [PMID: 30898078 DOI: 10.1080/09593330.2019.1595163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
A highly sensitive and selective optical membrane for determination of Au3+ was synthesized by immobilization of a rhodamine derivative on agarose hydrogel. The sensing dye was synthesized by solvatochromism of rhodamine B via rhodamine lactone-zwitterion equilibrium. UV-vis spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were employed to confirm that the rhodamine-lactone (RhoL) was incorporated into the agarose hydrogel. The results showed that the sensor was highly selective for recognizing Au3+ over other metal ions in real systems. In addition, DFT calculation results suggested that the membrane sensor formed stable complexes with Au3+ through a large number of cation-dipole and ion-ion interactions. In addition, according to changes in signaling upon adding various Au3+ concentration, the limit of detection of Arg-RhoL for Au3+ is calculated to be 5 µM. This approach may provide an easily measurable and inherently sensitive method for Au3+ ion detection in environmental and biological applications.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
| | - Banchob Wanno
- Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
| | - Thawatchai Tuntulani
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Buncha Pulpoka
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatthai Kaewtong
- Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, Thailand
| |
Collapse
|
22
|
Wu L, Zhao S, Zhu K, Shi Y, Nie X, Jia H. Role of coke-bounded environmentally persistent free radicals in phenanthrene degradation by hydrogen peroxide. ENVIRONMENTAL TECHNOLOGY 2020; 41:2122-2129. [PMID: 30522415 DOI: 10.1080/09593330.2018.1556347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Emission of polycyclic aromatic hydrocarbons (PAHs) is accompanied with the discharge of carbonaceous particles during the coke production. To degrade the adsorbed PAHs, hydrogen peroxide (H2O2) was applied as an oxidising agent, which might be activated by the inherent environmentally persistent free radicals (EPFRs) on coke particles. The transformation of phenanthrene (PHE), selected as model molecule, was achieved in H2O2/coke particle system without the addition of additional activating agent. This process consumed the particle-bounded EPFRs, inducing the decreasing of spin density from 1.92 × 1018 to 4.4 × 1017 spins g-1 in 30 min of reaction time. Electron paramagnetic resonance (EPR) technique coupled with spin-trapping agent 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) was used to probe the potential formation of reactive oxygen species. A higher capture [[Formula: see text]] concentration was observed with larger decreases in EPFRs concentration, indicating that EPFRs were the main contributor to the formation of [Formula: see text]. The obtained results suggested that the activation of H2O2 by EPFRs on coke particles resulted in the generation of hydroxyl radical ([Formula: see text]), which then back-reacted with adsorbed PHE. The finding of this study shed light on a new remediation technology for toxic carbonaceous byproducts discharged during the coke production.
Collapse
Affiliation(s)
- Lan Wu
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Song Zhao
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Kecheng Zhu
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Yafang Shi
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Xiaofeng Nie
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| | - Hanzhong Jia
- College of Resources and Environment, Northwest A & F University, Yangling, People's Republic of China
| |
Collapse
|
23
|
Zhang X, Lu A, Li D, Shi L, Luo Z, Peng C. Simultaneous removal of methylene blue and Pb 2+ from aqueous solution by adsorption on facile modified lignosulfonate. ENVIRONMENTAL TECHNOLOGY 2020; 41:1677-1690. [PMID: 30394195 DOI: 10.1080/09593330.2018.1544666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
In this paper, simultaneous removal of methylene blue (MB) and Pb2+ from the binary component system by an easily prepared cross-linked lignosulfonate bio-adsorbent (CLLS) was described. CLLS was characterized by FTIR, SEM/EDS and TGA. The influences of pH, temperature, contact time and initial MB and Pb2+ concentrations on the adsorption performance were investigated. The results demonstrated a good ability of CLLS to remove MB and Pb2+ simultaneously. Using of 1.0 g L-1 loading, removal efficiency of MB and Pb2+ reached 98.0% and 97.8%, respectively, in the MB (100 mg.L-1)-Pb2+ (50 mg.L-1) system. Moreover, the adsorption isotherms and adsorption kinetics indicated that the results were fitting well with the Langmuir and pseudo-second-order model, respectively, for both MB and Pb2+. Based on the Langmuir model, the maximum adsorption capacity of MB and Pb2+ reached 132.6 and 64.9 mg g-1, respectively, in the MB-Pb2+ system, which was much lower than that in the single component system (358.4 mg g-1 100.9 mg g-1 for MB and Pb2+, respectively). Hence, simultaneous adsorption of MB and Pb2+ onto CLLS was an antagonistic adsorption. In addition, an apart-sequential adsorption method was used to study the action of adsorption sites on CLLS for MB and/or Pb2+ with the help of an efficient self-made apparatus. Rudimental results showed that there would be three different kinds of adsorption sites on CLLS: MB-site, Pb2+-site and MB/Pb2+- shared sites. Furthermore, in the MB (100 mg.L-1)-Pb2+(50.0 mg.L-1) system, the simultaneous removal efficiency of MB and Pb2+ still maintained 91.8% and 85.0%, respectively, after 6 cycles.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Anwu Lu
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Dapei Li
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Liang Shi
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Zaigang Luo
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Chengsong Peng
- Department of Chemical Engineering, Anhui University of Science and Technology, Huainan, People's Republic of China
| |
Collapse
|
24
|
Huang Y, Wang Y, Meng X, Liu X. Highly efficient Co-OMS-2 catalyst for the degradation of reactive blue 19 in aqueous solution. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Zhao J, Xing T, Li Q, Chen Y, Yao W, Jin S, Chen S. Preparation of chitosan and carboxymethylcellulose‐based polyelectrolyte complex hydrogel via SD‐A‐SGT method and its adsorption of anionic and cationic dye. J Appl Polym Sci 2020. [DOI: 10.1002/app.48980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Zhao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
- Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy TechnologyTsinghua University Beijing China
| | - Tao Xing
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Qin Li
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Yu Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Weishang Yao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Shaohua Jin
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Shusen Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| |
Collapse
|
26
|
An efficient pH sensitive hydrogel, with biocompatibility and high reusability for removal of methylene blue dye from aqueous solution. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Liu X, Huang Y, Zhao P, Meng X, Astruc D. Precise Cu Localization‐Dependent Catalytic Degradation of Organic Pollutants in Water. ChemCatChem 2019. [DOI: 10.1002/cctc.201901440] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiang Liu
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang, Hubei 443002 P. R. China
| | - Yu Huang
- College of Materials and Chemical EngineeringKey Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University Yichang, Hubei 443002 P. R. China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Didier Astruc
- ISMUMR CNRS 5255Université de Bordeaux Talence Cedex 33405 France
| |
Collapse
|
28
|
Wang C, Fu J, Zhang Y, Zhao H, Wei X, Zhang R. Microhydrangeas with a high ratio of low valence MnOx are capable of extremely fast degradation of organics. Chem Commun (Camb) 2018; 54:7330-7333. [DOI: 10.1039/c8cc02958j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low valence manganese oxides are essential to directly produce abundant ˙OH radicals for extremely fast catalytic degradation of dye pollutants.
Collapse
Affiliation(s)
- Chengcheng Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
| | - Jiali Fu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
| | - Yong Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
| | - Hui Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
| | - Xin Wei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
| | - Renjie Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China
- Shandong University
- Jinan 250100
- P. R. China
- National Engineering Technology Research Center for Colloidal Materials
| |
Collapse
|