1
|
Deng L, Guo W, Ngo HH, Zhang X, Chen C, Chen Z, Cheng D, Ni SQ, Wang Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152123. [PMID: 34864031 DOI: 10.1016/j.scitotenv.2021.152123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Cheng Chen
- Infinite Water Holdings Pty Ltd., Unit 17/809 Botany Road, Rosebery, Sydney, NSW 2018, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Quan Wang
- Department of Environment Science & Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Xu X, Liu GH, Li Q, Wang H, Sun X, Shao Y, Zhang J, Liu S, Luo F, Wei Q, Sun W, Li Y, Qi L. Optimization nutrient removal at different volume ratio of anoxic-to-aerobic zone in integrated fixed-film activated sludge (IFAS) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148824. [PMID: 34246150 DOI: 10.1016/j.scitotenv.2021.148824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the influence of different volume ratios of the anoxic-to-aerobic zone (Vano/Vaer) on the enhancement of nitrogen and phosphorus removal in an integrated fixed-film activated sludge (IFAS) system. As the Vano/Vaer increased from 1:2 to 2:1, the removal of organic carbon, nitrogen and phosphorus nutrients of the IFAS system was improved. At Vano/Vaer = 1:1, the removal effect of nitrogen and phosphorus nutrients was optimal, and the average removal rates of COD, NH4+-N, TN, and TP of the system reached 90 ± 3.2%, 98.2 ± 1.4%, 88.9 ± 2.2%, and 89.1 ± 2.7%, respectively. As the volume of the anoxic zone continued to increase, the denitrifying phosphate-accumulating capacity of the system was enhanced, and the highest ratio of specific anoxic and aerobic phosphorus uptake rate could reach 65.3%. Analysis of the molecular evaluation showed that, the proportion of nitrifying bacteria in the biofilm gradually increased as Vano increased. Moreover, denitrifying phosphate-accumulating organisms (DNPAOs), ammonia-oxidizing archaea (AOA), and anaerobic ammonium oxidizing (Anammox) bacteria were all enriched all showed enrichment in the biofilm of fiber carriers, which further strengthened the system's synergistic removal of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Xianglong Xu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Qinyu Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Xu Sun
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yuting Shao
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jingbing Zhang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Shuai Liu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Fangzhou Luo
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Qi Wei
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhuo Sun
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yinghao Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lu Qi
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
3
|
Waqas S, Bilad MR, Man Z, Wibisono Y, Jaafar J, Indra Mahlia TM, Khan AL, Aslam M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110718. [PMID: 32510449 DOI: 10.1016/j.jenvman.2020.110718] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) process is considered as one of the leading-edge processes that provides a sustainable solution for wastewater treatment. IFAS was introduced as an advancement of the moving bed biofilm reactor by integrating the attached and the suspended growth systems. IFAS offers advantages over the conventional activated sludge process such as reduced footprint, enhanced nutrient removal, complete nitrification, longer solids retention time and better removal of anthropogenic composites. IFAS has been recognized as an attractive option as stated from the results of many pilot and full scales studies. Generally, IFAS achieves >90% removals for combined chemical oxygen demand and ammonia, improves sludge settling properties and enhances operational stability. Recently developed IFAS reactors incorporate frameworks for either methane production, energy generation through algae, or microbial fuel cells. This review details the recent development in IFAS with the focus on the pilot and full-scale applications. The microbial community analyses of IFAS biofilm and floc are underlined along with the special emphasis on organics and nitrogen removals, as well as the future research perspectives.
Collapse
Affiliation(s)
- Sharjeel Waqas
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Zakaria Man
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Yusuf Wibisono
- Bioprocess Engineering, Universitas Brawijaya, Malang, Indonesia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| |
Collapse
|
4
|
Liu D, Song K, Xie G, Li L. MBR-UV/Cl 2 system in treating polluted surface water with typical PPCP contamination. Sci Rep 2020; 10:8835. [PMID: 32483265 PMCID: PMC7264135 DOI: 10.1038/s41598-020-65845-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
This study proposed the membrane bioreactor–ultraviolet/chlorine (MBR-UV/Cl2) process for treating polluted surface water with pharmaceutical personal care product (PPCP) contamination. Results showed that MBR-UV/Cl2 effectively removed the organic matters and ammonia at approximately 80% and 95%. MBR-UV/Cl2 was used in the removal of sulfadiazine(SDZ), sulfamethoxazole(SMZ), tetracycline(TC), oxytetracycline(OTC), ciprofloxacin(CIP), ofloxacin(OFX), erythromycin(ERY), roxithromycin(ROX), ibuprofen(IBU) and, naproxen(NAX) at 12.18%, 95.61%, 50.50%, 52.97%, 33.56%, 47.71%, 87.57%, 93.38%, 93.80%, and 71.46% in which their UV/Cl2 contribution was 12.18%, 95.61%, 29.04%, 38.14%, 25.94%, 7.20%, 80.28%, 33.79%, 73.08%, and 23.05%, respectively. The removal of 10 typical PPCPs using UV/Cl2 obtained higher contributions than those of the MBR process, except OTC, ROX, and IBU. The UV/Cl2 process with 3-min hydraulic retention time and chlorine concentration at 3 mg/L effectively removed the trace of PPCPs. MBR-UV/Cl2 has the potential to be developed as an effective technology in treating polluted surface water with PPCP contamination.
Collapse
Affiliation(s)
- Dan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Li L, Liu D, Song K, Zhou Y. Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water. MARINE POLLUTION BULLETIN 2020; 150:110724. [PMID: 31759635 DOI: 10.1016/j.marpolbul.2019.110724] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 05/06/2023]
Abstract
The microplastics removal and its effects on membrane fouling in membrane bioreactor (MBR) for treating polluted surface water in drinking purpose was investigated in this study. Typical microplastics polyvinylchloride (PVC) with concentration 10 particles/L was added in the feed water. MBR was effective in treating organic matters and ammonia with removal rate over 80% and 95%, respectively. The removal performance was immediately inhibited with the microplastics PVC added into the MBR system, and recovered after operated for few days. The membrane fouling and cleaning results indicated that microplastics contamination could led to higher membrane fouling, and also the irreversible membrane fouling. The main contributor of rejection is the membrane module and the adsorption onto bio-carrier. The microbial community of the system before and after PVC addition did not show obvious difference. MBR has the potential to be used as effective technology in treating microplastics contaminated polluted surface water.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yiwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|