1
|
Li G, Yu Y, Li X, Jia H, Ma X, Opoku PA. Research progress of anaerobic ammonium oxidation (Anammox) process based on integrated fixed-film activated sludge (IFAS). ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13235. [PMID: 38444262 PMCID: PMC10915381 DOI: 10.1111/1758-2229.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
The integrated fixed-film activated sludge (IFAS) process is considered one of the cutting-edge solutions to the traditional wastewater treatment challenges, allowing suspended sludge and attached biofilm to grow in the same system. In addition, the coupling of IFAS with anaerobic ammonium oxidation (Anammox) can further improve the efficiency of biological denitrification. This paper summarises the research progress of IFAS coupled with the anammox process, including partial nitrification anammox, simultaneous partial nitrification anammox and denitrification, and partial denitrification anammox technologies, and describes the factors that limit the development of related processes. The effects of dissolved oxygen, influent carbon source, sludge retention time, temperature, microbial community, and nitrite-oxidising bacteria inhibition methods on the anammox of IFAS are presented. At the same time, this paper gives an outlook on future research focus and engineering practice direction of the process.
Collapse
Affiliation(s)
- Guang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Yunyong Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xingyu Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Hongsheng Jia
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | - Xiaoning Ma
- Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
| | | |
Collapse
|
2
|
Xu X, Liu GH, Li Q, Wang H, Sun X, Shao Y, Zhang J, Liu S, Luo F, Wei Q, Sun W, Li Y, Qi L. Optimization nutrient removal at different volume ratio of anoxic-to-aerobic zone in integrated fixed-film activated sludge (IFAS) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148824. [PMID: 34246150 DOI: 10.1016/j.scitotenv.2021.148824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the influence of different volume ratios of the anoxic-to-aerobic zone (Vano/Vaer) on the enhancement of nitrogen and phosphorus removal in an integrated fixed-film activated sludge (IFAS) system. As the Vano/Vaer increased from 1:2 to 2:1, the removal of organic carbon, nitrogen and phosphorus nutrients of the IFAS system was improved. At Vano/Vaer = 1:1, the removal effect of nitrogen and phosphorus nutrients was optimal, and the average removal rates of COD, NH4+-N, TN, and TP of the system reached 90 ± 3.2%, 98.2 ± 1.4%, 88.9 ± 2.2%, and 89.1 ± 2.7%, respectively. As the volume of the anoxic zone continued to increase, the denitrifying phosphate-accumulating capacity of the system was enhanced, and the highest ratio of specific anoxic and aerobic phosphorus uptake rate could reach 65.3%. Analysis of the molecular evaluation showed that, the proportion of nitrifying bacteria in the biofilm gradually increased as Vano increased. Moreover, denitrifying phosphate-accumulating organisms (DNPAOs), ammonia-oxidizing archaea (AOA), and anaerobic ammonium oxidizing (Anammox) bacteria were all enriched all showed enrichment in the biofilm of fiber carriers, which further strengthened the system's synergistic removal of nitrogen and phosphorus.
Collapse
Affiliation(s)
- Xianglong Xu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Qinyu Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Xu Sun
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yuting Shao
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jingbing Zhang
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Shuai Liu
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Fangzhou Luo
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Qi Wei
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Wenzhuo Sun
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yinghao Li
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lu Qi
- Low Carbon Water Environmental Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
3
|
The Changing and Distribution Laws of Oxygen Transfer Efficiency in the Full-Scale IFAS Process. WATER 2021. [DOI: 10.3390/w13141933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The integrated fixed-film activated sludge (IFAS) process has been widely used in the upgrading of wastewater treatment plants (WWTPs). The oxygen transfer efficiency (αOTE) is of great significance to the design and operation of the IFAS process. The carrier filling ratio (CFR) and aeration type are two critical factors affecting αOTE and standard oxygen transfer efficiency (αSOTE). However, the distribution and changing laws of αOTE and αSOTE in the full-scale IFAS process areunclear. To optimize the operation of a WWTP and to improve the αOTE of the aeration systems, several off-gas tests were conducted under different aeration types and different CFRs. The results show that for the aerobic tank investigated (the ratio of length and width was 8:1), the αOTE and the αSOTE of the middle of the aeration systems were higher than those of the other two sides. However, the reason for the low αOTE at the beginning and the end of the tank may be different. Coarse-bubble aeration systems had a lower αOTE and almost the same oxygenation capacity (αSOTE) as the fine-bubble aeration systems under constant CFR (43%). The average αSOTE (18.7–28.9%) of the hybrid aeration systems increased with increasing CFR (7.7–57.7%), and different locations exhibited different degrees of change. The results reveal the distribution and changing law of the αOTE of aeration systems in the IFAS process, and attention should be paid to the improvement of the OTE of the plug-flow IFAS process.
Collapse
|
4
|
Zaidi NS, Muda K, Sohaili J, Loan LW, Sillanpää M. Enhancement of nitrification efficiency during sludge bulking by magnetic field under long sludge retention time. 3 Biotech 2020; 10:408. [PMID: 32904368 DOI: 10.1007/s13205-020-02398-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/17/2020] [Indexed: 11/26/2022] Open
Abstract
The aim of the present study is to investigate the potential of magnetic field application as an alternative approach for controlling sludge bulking due to long sludge retention time (SRT) while enhancing nitrification efficiency upon the occurrence. Two sequencing batch reactors, reactor A (SBRA, magnetic field intensity 88.0 mT) and reactor B (SBRB, control) were operated under long SRT to induce the growth of filamentous microorganisms. The effect of magnetic field on nitrification, viz. ammonia-nitrogen (NH4-N) and nitrite removal, as well as biomass properties were studied under the sludge bulking condition. Results indicated that nitrification efficiency of SBRA was consistently higher with 90% NH4-N removal and 74-81% nitrite removal, which could be credited to the enhanced biomass properties of activated sludge due to the induced magnetic field. Metabolism activity and biodegradability of aerobic bacteria were also enhanced through the application of magnetic field, even under long SRT condition. This was evidenced by the average oxygen uptake rate (OUR) in SBRA that was higher with 11.7 ± 1.2 mg/L·h compared to SBRB with 9.5 ± 0.4 mg/L·h. Occurrence of filamentous sludge bulking was likewise minimized.
Collapse
Affiliation(s)
- Nur Syamimi Zaidi
- Faculty of Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor Malaysia
| | - Khalida Muda
- Faculty of Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor Malaysia
| | - Johan Sohaili
- Faculty of Engineering, School of Civil Engineering, Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor Malaysia
| | - Liew Wai Loan
- Centre for Degree Programme, School of Professional and Continuing Education, Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor Malaysia
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, Miami, USA
| |
Collapse
|
5
|
Waqas S, Bilad MR, Man Z, Wibisono Y, Jaafar J, Indra Mahlia TM, Khan AL, Aslam M. Recent progress in integrated fixed-film activated sludge process for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 268:110718. [PMID: 32510449 DOI: 10.1016/j.jenvman.2020.110718] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) process is considered as one of the leading-edge processes that provides a sustainable solution for wastewater treatment. IFAS was introduced as an advancement of the moving bed biofilm reactor by integrating the attached and the suspended growth systems. IFAS offers advantages over the conventional activated sludge process such as reduced footprint, enhanced nutrient removal, complete nitrification, longer solids retention time and better removal of anthropogenic composites. IFAS has been recognized as an attractive option as stated from the results of many pilot and full scales studies. Generally, IFAS achieves >90% removals for combined chemical oxygen demand and ammonia, improves sludge settling properties and enhances operational stability. Recently developed IFAS reactors incorporate frameworks for either methane production, energy generation through algae, or microbial fuel cells. This review details the recent development in IFAS with the focus on the pilot and full-scale applications. The microbial community analyses of IFAS biofilm and floc are underlined along with the special emphasis on organics and nitrogen removals, as well as the future research perspectives.
Collapse
Affiliation(s)
- Sharjeel Waqas
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia.
| | - Zakaria Man
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Yusuf Wibisono
- Bioprocess Engineering, Universitas Brawijaya, Malang, Indonesia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore, Pakistan
| |
Collapse
|
6
|
Tenore A, Vieira J, Frunzo L, Luongo V, Fabbricino M. Calibration and validation of an activated sludge model for membrane bioreactor wastewater treatment plants. ENVIRONMENTAL TECHNOLOGY 2020; 41:1923-1936. [PMID: 30468630 DOI: 10.1080/09593330.2018.1551940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
A mathematical model to simulate the biological processes occurring in a membrane bioreactor (MBR) is presented. The model accounts for different MBR technical features by introducing specific permeability parameters for the applied membrane system. The model considers for the heterotrophic storage process and the formation of soluble microbial products. The introduction of an inhibition coefficient influencing the anoxic kinetics enables the model to simulate the particular operating conditions of the plant, such as a high or low dissolved oxygen concentration in the denitrification tank. The model was applied at the MBR wastewater treatment plant of Vila Nova do Ceira (Portugal) which uses a classic pre-denitrification cycle. Data for calibration and validation were sampled at the same wastewater treatment plant. Calibration was achieved by varying the kinetic parameters of the model to match the simulation results to the experimental data. The values of the kinetic parameters were similar to those found in the literature. The validation was performed by two different methodologies to analyse the model response to diverse operating conditions, and to evaluate the resilience of the MBR. Calibration and validation results were evaluated with mean average error, root mean square error and fractional mean bias as performance indexes. In most cases, these indexes confirmed the high accuracy of the model. Overall, the results of the calibration and validation steps enriched the proposed model by providing an effective biological description of the processes characterizing the MBR. Thus, the model is a reliable tool for the management and designing of MBR.
Collapse
Affiliation(s)
- Alberto Tenore
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Naples, Italy
| | - João Vieira
- INESCC - Institute for Systems Engineering and Computers at Coimbra, Department of Civil Engineering, University of Coimbra, Coimbra, Portugal
| | - Luigi Frunzo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Naples, Italy
| | - Vincenzo Luongo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Naples, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
| |
Collapse
|