1
|
Li X, Chen Y, Chen Z, Guo H, Yang S, Ma X. The recent progress on gaseous chlorinated aromatics removal for environmental applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
2
|
Li X, Ding X, Du Y, Xiao C, Zheng K, Liu X, Tian X, Zhang X. Controlled Transformation of Liquid Metal Microspheres in Aqueous Solution Triggered by Growth of GaOOH. ACS OMEGA 2022; 7:7912-7919. [PMID: 35284708 PMCID: PMC8908526 DOI: 10.1021/acsomega.1c06897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (LMs) are playing an increasingly important role in the fields of flexible devices, electronics, and thermal management due to their low melting point and excellent thermal and electrical conductivity, and the transformation of LMs in deionized water has recently received much attention. In this paper, we investigate the transformation process of EGaIn microspheres in deionized water and propose a two-step process of microspherical transformation, whereby the microspheres are first deformed into a spindle shape and then into lamellar nanorods. It is also shown that the growth of GaOOH crystals drives the transformation. Based on this result, EGaIn microspheres with controllable transformation could be prepared, such as spindle or lamellar rod shapes, extending the application area of LMs.
Collapse
Affiliation(s)
- Xiaofei Li
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| | - Xin Ding
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Yuhang Du
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| | - Chao Xiao
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Kang Zheng
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Xianglan Liu
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Xingyou Tian
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| | - Xian Zhang
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| |
Collapse
|
3
|
Tabata C, Shirasaki K, Sakai H, Sunaga A, Li D, Konaka M, Yamamura T. Influence of additives on low-temperature hydrothermal synthesis of UO 2+x and ThO 2. CrystEngComm 2022. [DOI: 10.1039/d2ce00278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UO2+x and ThO2 were synthesized through a hydrothermal reaction by adding aldehydes.
Collapse
Affiliation(s)
- Chihiro Tabata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Kenji Shirasaki
- Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hironori Sakai
- Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Ayaki Sunaga
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Dexin Li
- International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313, Japan
| | - Mariko Konaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Tomoo Yamamura
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| |
Collapse
|
4
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
5
|
Raauf A, Leduc J, Frank M, Stadler D, Graf D, Wilhelm M, Grosch M, Mathur S. Magnetic Field-Assisted Chemical Vapor Deposition of UO2 Thin Films. Inorg Chem 2021; 60:1915-1921. [DOI: 10.1021/acs.inorgchem.0c03387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aida Raauf
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Jennifer Leduc
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Michael Frank
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Daniel Stadler
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - David Graf
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Michael Wilhelm
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Matthias Grosch
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| |
Collapse
|
6
|
Leduc J, Frank M, Jürgensen L, Graf D, Raauf A, Mathur S. Chemistry of Actinide Centers in Heterogeneous Catalytic Transformations of Small Molecules. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04924] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer Leduc
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, D-50939 Cologne, Germany
| | - Michael Frank
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, D-50939 Cologne, Germany
| | - Lasse Jürgensen
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, D-50939 Cologne, Germany
| | - David Graf
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, D-50939 Cologne, Germany
| | - Aida Raauf
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, D-50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, D-50939 Cologne, Germany
| |
Collapse
|