1
|
Wang D, Candry P, Hunt KA, Flinkstrom Z, Shi Z, Liu Y, Wofford NQ, McInerney MJ, Tanner RS, De Leόn KB, Zhou J, Winkler MKH, Stahl DA, Pan C. Metaproteomics-informed stoichiometric modeling reveals the responses of wetland microbial communities to oxygen and sulfate exposure. NPJ Biofilms Microbiomes 2024; 10:55. [PMID: 38961111 PMCID: PMC11222425 DOI: 10.1038/s41522-024-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically, wetland soil may be exposed to oxygen (O2) during droughts, or to sulfate (SO42-) as a result of sea level rise. How these stressors - separately and together - impact microbial food webs driving carbon cycling in the wetlands is still not understood. To investigate this, we integrated geochemical analysis, proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO42- and O2 levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the adaptive responses of this community to changes in SO42- and O2 availability and identified altered microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO42- reduced CH4 emissions, with hydrogenotrophic methanogenesis more suppressed than acetoclastic. Elevated O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO42- and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The reduction in CH4 emission by increased SO42- and O2 was much greater than the concomitant increase in CO2 emission. Thus, greater SO42- and O2 exposure in wetlands is expected to reduce the aggregate warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique subnetwork involving carbon metabolism that converts lactate and SO42- to produce acetate, H2S, and CO2 when SO42- is elevated under oxic conditions. This study provides greater quantitative resolution of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands under future climate scenarios.
Collapse
Affiliation(s)
- Dongyu Wang
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Zachary Flinkstrom
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Zheng Shi
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yunlong Liu
- School of Computer Science, University of Oklahoma, Norman, OK, USA
| | - Neil Q Wofford
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | | | - Ralph S Tanner
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Kara B De Leόn
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Computer Science, University of Oklahoma, Norman, OK, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Chongle Pan
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
2
|
Mayekar PC, Auras R. Speeding it up: dual effects of biostimulants and iron on the biodegradation of poly(lactic acid) at mesophilic conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:530-539. [PMID: 38345085 DOI: 10.1039/d3em00534h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastic pollution presents a growing concern, and various solutions have been proposed to address it. One such solution involves the development of new plastics that match the properties of traditional polymers while exhibiting enhanced biodegradability when disposed of in a suitable environment. Poly(lactic acid) (PLA) is a biobased, compostable polymer known for its low environmental impact and ability to break down into harmless components within a specified timeframe. However, its degradation in industrial composting facilities poses challenges, and it cannot degrade in home composting. In this study, we investigated the biodegradability of PLA within a biostimulated compost matrix at mesophilic conditions (37 °C) over 180 days. The compost environment was enhanced with Fe3O4 nanopowder, skim milk, gelatin, and ethyl lactate, individually and in combination, to target different stages of the PLA biodegradation process. We monitored key indicators, CO2 evolution, number average molecular weight, and crystallinity, to assess the impact of the various biostimulants and iron. The results demonstrated that the most effective treatment for degrading PLA at mesophilic conditions was adding gelatin and Fe3O4. Gelatin accelerated PLA biodegradation by 25%, Fe3O4 by 17%, and a combination of gelatin and Fe3O4 by 30%. The effect of skim milk and ethyl lactate is also reported. This research introduces novel pathways to enhance PLA biodegradation in home composting scenarios, offering promising solutions to address the plastic pollution challenge.
Collapse
Affiliation(s)
- Pooja C Mayekar
- School of Packaging, Michigan State University, East Lansing, Michigan 48824, USA.
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
3
|
Chen Q, Li Z, Chen Y, Liu M, Yang Q, Zhu B, Mu J, Feng L, Chen Z. Effects of electron acceptors and donors on anaerobic biodegradation of PAHs in marine sediments. MARINE POLLUTION BULLETIN 2024; 199:115925. [PMID: 38113802 DOI: 10.1016/j.marpolbul.2023.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are typical organic pollutants accumulated in the environment. PAHs' bioremediation in sediments can be promoted by adding electron acceptor (EA) and electron donor (ED). Bicarbonate and sulfate were chosen as two EAs, and acetate and lactate were selected as two EDs. Six groups of amendments were added into the sediments to access their role in the anaerobic biodegradation of five PAHs, containing phenanthrene, anthracene, fluoranthene, pyrene, and benzo[a]pyrene. The concentrations of PAHs, EAs and EDs, electron transport system activity, and microbial diversity were analyzed during 126-day biodegradation in serum bottles. The HA group (bicarbonate and acetate) achieved the maximum PAH degradation efficiency of 89.67 %, followed by the SL group (sulfate and lactate) with 87.10 %. As the main PAHs degrading bacteria, the abundance of Marinobacter in H group was 8.62 %, and the addition of acetate significantly increased the abundance of Marinobacter in the HA group by 75.65 %.
Collapse
Affiliation(s)
- Qingguo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan 316022, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhenzhen Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yu Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan 316022, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei Liu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qiao Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Baikang Zhu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan 316022, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jun Mu
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572022, PR China.
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan 316022, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec H3G1M8, Canada
| |
Collapse
|
4
|
Moradi S, Firoozbakhtian A, Hosseini M, Karaman O, Kalikeri S, Raja GG, Karimi-Maleh H. Advancements in wearable technology for monitoring lactate levels using lactate oxidase enzyme and free enzyme as analytical approaches: A review. Int J Biol Macromol 2024; 254:127577. [PMID: 37866568 DOI: 10.1016/j.ijbiomac.2023.127577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Lactate is a metabolite that holds significant importance in human healthcare, biotechnology, and the food industry. The need for lactate monitoring has led to the development of various devices for measuring lactate concentration. Traditional laboratory methods, which involve extracting blood samples through invasive techniques such as needles, are costly, time-consuming, and require in-person sampling. To overcome these limitations, new technologies for lactate monitoring have emerged. Wearable biosensors are a promising approach that offers non-invasiveness, low cost, and short response times. They can be easily attached to the skin and provide continuous monitoring. In this review, we evaluate different types of wearable biosensors for lactate monitoring using lactate oxidase enzyme as biological recognition element and free enzyme systems.
Collapse
Affiliation(s)
- Sara Moradi
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 1439817435, Iran; Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Onur Karaman
- Akdeniz University, Department of Medical Imaging Techniques, Antalya, Turkey.
| | - Shankramma Kalikeri
- Division of Nanoscience and Technology, School of Lifesciences, Mysuru, JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India
| | - G Ganesh Raja
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhu Medical University, Quzhou Peoplés Hospital, PR China; School of Resources and Environment, University of Electronic Science and Technology of China, PR China; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
5
|
Liu GH, Yang S, Han S, Xie CJ, Liu X, Rensing C, Zhou SG. Nitrogen fixation and transcriptome of a new diazotrophic Geomonas from paddy soils. mBio 2023; 14:e0215023. [PMID: 37855611 PMCID: PMC10746287 DOI: 10.1128/mbio.02150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE The ability of Geomonas species to fix nitrogen gas (N2) is an important metabolic feature for its application as a plant growth-promoting rhizobacterium. This research is of great importance as it provides the first comprehensive direct experimental evidence of nitrogen fixation by the genus Geomonas in pure culture. We isolated a number of Geomonas strains from paddy soils and determined that nifH was present in these strains. This study demonstrated that these Geomonas species harbored genes encoding nitrogenase, as do Geobacter and Anaeromyxobacter in the same class of Deltaproteobacteria. We demonstrated N2-dependent growth of Geomonas and determined regulation of gene expression associated with nitrogen fixation. The research establishes and advances our understanding of nitrogen fixation in Geomonas.
Collapse
Affiliation(s)
- Guo-Hong Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, China
| |
Collapse
|
6
|
Wang D, Hunt KA, Candry P, Tao X, Wofford NQ, Zhou J, McInerney MJ, Stahl DA, Tanner RS, Zhou A, Winkler M, Pan C. Cross-Feedings, Competition, and Positive and Negative Synergies in a Four-Species Synthetic Community for Anaerobic Degradation of Cellulose to Methane. mBio 2023; 14:e0318922. [PMID: 36847519 PMCID: PMC10128006 DOI: 10.1128/mbio.03189-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 03/01/2023] Open
Abstract
Complex interactions exist among microorganisms in a community to carry out ecological processes and adapt to changing environments. Here, we constructed a quad-culture consisting of a cellulolytic bacterium (Ruminiclostridium cellulolyticum), a hydrogenotrophic methanogen (Methanospirillum hungatei), an acetoclastic methanogen (Methanosaeta concilii), and a sulfate-reducing bacterium (Desulfovibrio vulgaris). The four microorganisms in the quad-culture cooperated via cross-feeding to produce methane using cellulose as the only carbon source and electron donor. The community metabolism of the quad-culture was compared with those of the R. cellulolyticum-containing tri-cultures, bi-cultures, and mono-culture. Methane production was higher in the quad-culture than the sum of the increases in the tri-cultures, which was attributed to a positive synergy of four species. In contrast, cellulose degradation by the quad-culture was lower than the additive effects of the tri-cultures which represented a negative synergy. The community metabolism of the quad-culture was compared between a control condition and a treatment condition with sulfate addition using metaproteomics and metabolic profiling. Sulfate addition enhanced sulfate reduction and decreased methane and CO2 productions. The cross-feeding fluxes in the quad-culture in the two conditions were modeled using a community stoichiometric model. Sulfate addition strengthened metabolic handoffs from R. cellulolyticum to M. concilii and D. vulgaris and intensified substrate competition between M. hungatei and D. vulgaris. Overall, this study uncovered emergent properties of higher-order microbial interactions using a four-species synthetic community. IMPORTANCE A synthetic community was designed using four microbial species that together performed distinct key metabolic processes in the anaerobic degradation of cellulose to methane and CO2. The microorganisms exhibited expected interactions, such as cross-feeding of acetate from a cellulolytic bacterium to an acetoclastic methanogen and competition of H2 between a sulfate reducing bacterium and a hydrogenotrophic methanogen. This validated our rational design of the interactions between microorganisms based on their metabolic roles. More interestingly, we also found positive and negative synergies as emergent properties of high-order microbial interactions among three or more microorganisms in cocultures. These microbial interactions can be quantitatively measured by adding and removing specific members. A community stoichiometric model was constructed to represent the fluxes in the community metabolic network. This study paved the way toward a more predictive understanding of the impact of environmental perturbations on microbial interactions sustaining geochemically significant processes in natural systems.
Collapse
Affiliation(s)
- Dongyu Wang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Kristopher A. Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Pieter Candry
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Xuanyu Tao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Neil Q. Wofford
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Ralph S. Tanner
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Aifen Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
7
|
Santos AMD, Costa JM, Sancinetti GP, Rodriguez RP. Impacts of phosphorus and nitrogen absence on microbial diversity and sulfate removal in anaerobic batch reactors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:563-569. [PMID: 37085964 DOI: 10.1080/10934529.2023.2203638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfate-rich effluents have been successfully treated in anaerobic reactors using sulfate-reducing bacteria (SRB). Many authors have demonstrated that these systems require nitrogen and phosphorous supplementation to achieve high sulfate removal rates. However, the resource ratio theory assumes that some species can be dominant according to the nutritional relations used or even without external nutrient supplementation. Thus, this study evaluated the SRB communities in batch reactors without external nitrogen and phosphorus sources based on most probable number (MPN) quantification, denaturing gradient gel electrophoresis (DGGE) analyses and sequencing. The sulfate and chemical oxygen demand (COD) removal and kinetic parameters were also determined. After 100 days of operation, the sulfate and COD removal achieved 71.8 ± 10% and 86.5 ± 10%, respectively. The SRB population increased from 8.106 to 4 × 1012 MPN 100 mL-1, and the richness of SRB bands was much higher at the end of the experiment compared to the inoculum. In addition, the sequenced bands from SRB-DGGE showed similarities to Desulfacinum infernum, Desulfobulbus sp, Syntrophobacter and Desulfomicrobium aestuarii-related sequences. Therefore, biological treatment of acid mine drainage wastewater was effective in the absence of nutrients, lowering costs and providing high sulfate removal efficiency.
Collapse
Affiliation(s)
- Angélica Marcia Dos Santos
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Giselle Patrícia Sancinetti
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| | - Renata Piacentini Rodriguez
- Laboratory of Anaerobic Biotechnology - Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas, MG, Brazil
| |
Collapse
|
8
|
Zou J, Qiu YY, Li H, Jiang F. Sulfur disproportionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage. WATER RESEARCH 2023; 232:119647. [PMID: 36738555 DOI: 10.1016/j.watres.2023.119647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Biological sulfidogenic processes (BSPs) have been considered effective biotechnologies for the treatment of organic-deficit acid mine drainage (AMD) and heavy metal recovery. However, high-rate sulfide production relies on the continuous addition of exogenous organic substrates as electron donors to facilitate dissimilatory sulfate reduction, which substantially increases the operational cost and CO2 emission and also limits the wide application of BSPs in AMD treatment. In this study, we proposed a novel chemoautotrophic elemental sulfur disproportionation (SD) process as an alternative to conventional BSPs for treating AMD, in which sulfur-disproportionating bacteria (SDB) disproportionates sulfur to sulfide and sulfate without organic substrate supplementation. During the 393-day lab-scale test, we observed that the sulfur-disproportionating reactor (SDR) achieved a stable high-rate sulfide production, with a maximal rate of 21.10 mg S/L-h at an organic-substrate-free condition. This high rate of sulfide production suggested that the SD process could provide sufficient sulfide to precipitate metal ions from AMD. Thermodynamics analysis and batch tests further revealed that alkalinity rather than sulfate was the critical factor influencing the SD process, suggesting that the abundant sulfate present in AMD would not inhibit the SD process. The critical condition of SD in the SDR was therefore determined. Microbial community analysis showed that Dissulfurimicrobium sp. was the dominant SDB during the long-term operation regardless of dynamic sulfate and/or alkalinity concentrations, which provides evidence that SDB can be employed for sustainable and high-rate sulfide production for engineering purposes. A multi-stage AMD treatment system equipped with a SDR removed over 99% of the influent metals (i.e., Fe, Al, Zn, Cu, Pb) from AMD except for Mn. This study demonstrated that the novel SD process is a green and promising biotechnology for the sustainable treatment of organic-deficient metal-laden wastewater, such as AMD.
Collapse
Affiliation(s)
- Jiahui Zou
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Yan-Ying Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Hao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
de Menezes CA, de Souza Almeida P, Camargo FP, Delforno TP, de Oliveira VM, Sakamoto IK, Varesche MBA, Silva EL. Two problems in one shot: Vinasse and glycerol co-digestion in a thermophilic high-rate reactor to improve process stability even at high sulfate concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160823. [PMID: 36521617 DOI: 10.1016/j.scitotenv.2022.160823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic co-digestion (AcoD) of sugarcane vinasse and glycerol can be profitable because of the destination of two biofuel wastes produced in large quantities in Brazil (ethanol and biodiesel, respectively) and the complementary properties of these substrates. Thus, the objective of this study was to assess the effect of increasing the organic loading rate (OLR) from 2 to 20 kg COD m-3 d-1 on the AcoD of vinasse and glycerol (50 %:50 % on a COD basis) in a thermophilic (55 °C) anaerobic fluidized bed reactor (AFBR). The highest methane production rate was observed at 20 kg COD m-3 d-1 (8.83 L CH4 d-1 L-1), while the methane yield remained stable at around 265 NmL CH4 g-1 CODrem in all conditions, even when influent vinasse reached 1811 mg SO42- L-1 (10 kg COD m-3 d-1). Sulfate was not detected in the effluent. Bacterial genera related to sulfate removal, such as Desulfovibrio and Desulfomicrobium, were observed by means of shotgun metagenomic sequencing at 10 kg COD m-3 d-1, as well as the acetoclastic archaea Methanosaeta and prevalence of genes encoding enzymes related to acetoclastic methanogenesis. It was concluded that process efficiency and methane production occurred even in higher sulfate concentrations due to glycerol addition.
Collapse
Affiliation(s)
- Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Priscilla de Souza Almeida
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Tiago Palladino Delforno
- SENAI Innovation Institute for Biotechnology, Rua Anhaia, 1321, Bom Retiro - São Paulo, 01130-000, São Paulo, SP, Brazil
| | - Valeria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), State University of Campinas, Campinas, SP CEP 13081-970, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone, 1100, Jd. Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, km 235, CEP 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Production, Characterization and Commercial Formulation of a Biosurfactant from Candida tropicalis UCP0996 and Its Application in Decontamination of Petroleum Pollutants. Processes (Basel) 2021. [DOI: 10.3390/pr9050885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Contamination by oil and its derivatives causes serious damage to the environment, motivating the development of innovative technologies for the removal of these contaminants, such as the use of biosurfactants. In the present study, the biosurfactant from Candida tropicalis UCP0996 produced in the low cost-medium formulated with molasses, residual frying oil, and corn steep liquor, was characterized and its toxicity, formulation, and application in removal and biodegradation of oil were investigated. The surface tension of the medium was reduced to 30.4 mN/m, yielding 4.11 g/L of isolated biosurfactant after 120 h. Tests under extreme environmental conditions indicated the stability of the biosurfactant. Chemical characterization by thin layer chromatography (TLC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), and gas chromatography and mass spectroscopy (CG-MS) revealed the glycolipidic nature of the biosurfactant. The isolated biosurfactant showed no toxicity against the microcrustacean Artemia salina, while the properties of the formulated biosurfactant remained stable during 120 days of storage. The biosurfactant removed 66.18% of motor oil adsorbed in marine stones and dispersed 70.95% of oil in seawater. The biosurfactant was also able to increase by 70% the degradation of motor oil by seawater indigenous microorganisms, showing great potential to be applied as a commercial additive in the bioremediation of oil spills.
Collapse
|