1
|
El Fawal G, Abu-Serie MM, Ali SM, Elessawy NA. Nanocomposite fibers based on cellulose acetate loaded with fullerene for cancer therapy: preparation, characterization and in-vitro evaluation. Sci Rep 2023; 13:21045. [PMID: 38030752 PMCID: PMC10687030 DOI: 10.1038/s41598-023-48302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
The current prevalence of cancerous diseases necessitates the exploration of materials that can effectively treat these conditions while minimizing the occurrence of adverse side effects. This study aims to identify materials with the potential to inhibit the metastasis of cancerous diseases within the human body while concurrently serving as therapeutic agents for their treatment. A novel approach was employed to enhance the anti-cancer properties of electrospun cellulose fibers by incorporating fullerene nanoparticles (NPs) into cellulose acetate (CA) fibers, resulting in a composite material called Fullerene@CA. This development aimed at utilizing the anti-cancer properties of fullerenes for potential therapeutic applications. This process has been demonstrated in vitro against various types of cancer, and it was found that Fullerene@CA nanocomposite fibers displayed robust anticancer activity. Cancer cells (Caco-2, MDA-MB 231, and HepG-2 cells) were inhibited by 0.3 and 0.5 mg.g-1 fullerene doses by 58.62-62.87%, 47.86-56.43%, and 48.60-57.73%, respectively. The tested cancer cells shrink and lose their spindle shape due to morphological changes. The investigation of the prepared nanocomposite reveals its impact on various genes, such as BCL2, NF-KB, p53, Bax, and p21, highlighting the therapeutic compounds' effectiveness. The experimental results demonstrated that the incorporation of NPs into CA fibers resulted in a significant improvement in their anti-cancer efficacy. Therefore, it is suggested that these modified fibers could be utilized as a novel therapeutic approach for the treatment and prevention of cancer metastasis.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Polymer Materials Research Department, SRTA-City), Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City, Alexandria, 21934, Egypt
| | - Safaa M Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Noha A Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Wang D, Zhao J, Mulder RJ, Ratcliffe J, Wang C, Wu B, Wang J, Hao X. Highly aqueously stable C 60-polymer nanoparticles with excellent photodynamic property for potential cancer treatment. SMART MEDICINE 2023; 2:e20230033. [PMID: 39188299 PMCID: PMC11235996 DOI: 10.1002/smmd.20230033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2023] [Indexed: 08/28/2024]
Abstract
Fullerenes are a class of carbon nanomaterials that find a wide range of applications in biomedical fields, especially for photodynamic cancer therapy because of its photosensitive effect. However, hydrophobic fullerenes can only be dispersed in organic solvents which hinders their biomedical applications. Here, we report a facile method to prepare highly water-dispersible fullerene (C60)-polymer nanoparticles with hydrodynamic sizes of 50-70 nm. Hydrophilic random copolymers containing different ratios of polyethylene glycol methyl ether methacrylate and 2-aminoethylmethacrylamide were synthesized for conjugating with C60 molecules through efficient nucleophilic Michael addition reaction between amine groups from hydrophilic polymer and carbon-carbon double bonds from C60. As a result, the amphiphilic C60-polymer conjugates could be well dispersed and nano-assembled in water with a C60 concentration as high as 7.8 mg/mL, demonstrating a significant improvement for the solubility of C60 in an aqueous system. Owing to the high C60 content, the C60-polymer nanoparticles showed a strong photodynamic therapy effect on human lung cancer cells (A549) under light irradiation (450 nm) in both 2D cell culture and 3D spheroid culture, while demonstrating ignorable cytotoxicity under dark. This highly efficient and convenient method to prepare water-dispersible C60-polymer conjugates may have a great impact on the future biomedical applications of fullerenes.
Collapse
Affiliation(s)
- Dan Wang
- Guangdong Pharmaceutical UniversityGuangzhouGuangdongChina
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Jianyang Zhao
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Roger J. Mulder
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Julian Ratcliffe
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Chunru Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
| | - Bo Wu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
| | - Jinquan Wang
- Guangdong Pharmaceutical UniversityGuangzhouGuangdongChina
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
| | - Xiaojuan Hao
- ManufacturingCommonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVictoriaAustralia
- Joint Research Centre on MedicineThe Affiliated Xiangshan Hospital of Wenzhou Medical UniversityNingboZhejiangChina
- Zhejiang Engineering Research Centre for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
3
|
Hashem AH, Attia MS, Kandil EK, Fawzi MM, Abdelrahman AS, Khader MS, Khodaira MA, Emam AE, Goma MA, Abdelaziz AM. Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microb Cell Fact 2023; 22:107. [PMID: 37280587 DOI: 10.1186/s12934-023-02118-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Human life has been significantly impacted by the creation and spread of novel species of antibiotic-resistant bacteria and virus strains that are difficult to manage. Scientists and researchers have recently been motivated to seek out alternatives and other sources of safe and ecologically friendly active chemicals that have a powerful and effective effect against a wide variety of pathogenic bacteria as a result of all these hazards and problems. In this review, endophytic fungi and their bioactive compounds and biomedical applications were discussed. Endophytes, a new category of microbial source that can produce a variety of biological components, have major values for study and broad prospects for development. Recently, endophytic fungi have received much attention as a source for new bioactive compounds. In addition, the variety of natural active compounds generated by endophytes is due to the close biological relationship between endophytes and their host plants. The bioactive compounds separated from endophytes are usually classified as steroids, xanthones, terpenoids, isocoumarins, phenols, tetralones, benzopyranones and enniatines. Moreover, this review discusses enhancement methods of secondary metabolites production by fungal endophytes which include optimization methods, co-culture method, chemical epigenetic modification and molecular-based approaches. Furthermore, this review deals with different medical applications of bioactive compounds such as antimicrobial, antiviral, antioxidant and anticancer activities in the last 3 years.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Esalm K Kandil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud M Fawzi
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed S Abdelrahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed S Khader
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Khodaira
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Abdallah E Emam
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Goma
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amer M Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
4
|
da Silva IJS, Sousa TF, de Queiroz CA, dos Santos Castro G, Caniato FF, de Medeiros LS, Angolini CFF, Hanada RE, Koolen HHF, da Silva GF. Penicillium amapaense sp. nov., section Exilicaulis, and new records of Penicillium labradorum in Brazil isolated from Amazon River sediments with potential applications in agriculture and biotechnology. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
5
|
Kalika EB, Bondarev NV, Katin KP, Kochaev AI, Grekova AA, Kaya S, Bauetdinov YA, Maslov MM. Adsorption of 40 low molecular weight drugs on pristine and fluorinated C60 fullerenes: Ab initio, statistical and neural networks analysis. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|