1
|
Meng J, Duan H, Li H, Watts S, Liu P, Shrestha S, Zheng M, Yu W, Chen Z, Song Y, Dwyer J, Hu S, Yuan Z. Free nitrous acid pre-treatment enhances anaerobic digestion of waste activated sludge and rheological properties of digested sludge: A pilot-scale study. WATER RESEARCH 2020; 172:115515. [PMID: 31986403 DOI: 10.1016/j.watres.2020.115515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, the effects of free nitrous acid (FNA) pre-treatment on the rheological properties of digested sludge were investigated at a pilot-scale, along with the improvement in volatile solids (VS) destruction and biogas production. Two pilot-scale anaerobic sludge digesters were operated for one year, one receiving thickened waste activated sludge (TWAS) without pre-treatment (control) and one receiving TWAS pre-treated for 24 h at an FNA concentration of 4.9-6.1 mgN/L (nitrite = 250 mgN/L, pH = 5.0, T = 22-30 °C). The results confirmed the enhancing effect of FNA pre-treatment on methane production (37 ± 1%), consistent with previous laboratory studies. Equally importantly, FNA pre-treatment substantially reduced the shear viscosity of TWAS by 51 ± 8% at 100 s-1 and 49 ± 7% at 250 s-1, likely due to the solubilization of the TWAS (11.1 ± 0.8%). Similarly, FNA pre-treatment also reduced these viscosity parameters of the digested sludge by 80 ± 4% and 78 ± 4%, respectively, caused by both enhanced VS destruction and disintegration of the digested sludge. The dewaterability of digested sludge, assessed by dewatered solids content, capillary suction time and specific resistance to filtration, was not improved by FNA pre-treatment. The polymer requirement for dewatering was reduced by 24 ± 0.6% due to the lower solids concentration in the digested sludge achieved with FNA pre-treatment. The changes to sludge rheological properties revealed in this study further enhances the business case for the FNA pre-treatment technology.
Collapse
Affiliation(s)
- Jia Meng
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 50090, China
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Huijuan Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Shane Watts
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Peng Liu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Sohan Shrestha
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Min Zheng
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Wenbo Yu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhongwei Chen
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jason Dwyer
- Queensland Urban Utilities, Brisbane, QLD, 4000, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Feng G, Ma H, Bai T, Guo Y. Rheology characteristics of activated sludge and thermal treated sludge at different process temperature. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 2017:229-237. [PMID: 29698237 DOI: 10.2166/wst.2018.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, flow behavior for activated sludge and thermal treated sludge at different process temperature and various solids content were analyzed. Results show viscosity of activated sludge and thermal treated sludge both decreased with increasing temperature, while temperature dependence of viscosity for both types of sludge were not same at the whole study range. The relationship between viscosity and temperature could be expressed by Arrhenius equation for activated sludge, and it was interesting that this law was only suitable when certain solid content (80 g/L) for thermal treated sludge. Moreover, the logistic model was certified to be accurate in describing the functionality for thermal treated sludge. As solid content was at range of 80-100 g/L, active energy of viscosity for both kinds of sludge were similar, indicating that physicochemical properties' change of sludge after thermal hydrolysis had little effect on viscosity sensibility. Arrhenius law was also suitable for describing the relationship between storage modulus and process temperature for activated sludge. However, for thermal treated sludge, Arrhenius law was invalid. Yield stress for activated sludge was prominent, while it could be ignored for thermal treated sludge.
Collapse
Affiliation(s)
- GuoHong Feng
- School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan 030024, China E-mail:
| | - He Ma
- School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan 030024, China E-mail:
| | - Tiantian Bai
- School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan 030024, China E-mail:
| | - Yabing Guo
- School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan 030024, China E-mail:
| |
Collapse
|
3
|
Méndez-Contreras JM, López-Escobar LA, Martínez-Hernández S, Cantú-Lozano D, Ortiz-Ceballos AI. Rheological behavior of physicochemical sludges during methanogenesis suppression and hydrogen production at different organic loading rates. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:515-522. [PMID: 26943338 DOI: 10.1080/10934529.2016.1141617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigated the rheological behavior of raw physicochemical sludges and sludges that were digested at different organic loading rates (OLRs) (1, 5, 10 and 15 gVS L(-1) d(-1)) during methanogenesis suppression to produce hydrogen anaerobically. The Herschel-Bulkley model was used to describe the rheology of these sludges with specific properties. The results indicate that the Herschel-Bulkley model adequately described the rheology (τ0 ≠ 0) of this type of fluids (R(2) > 0.98). In addition, the raw physicochemical sludges and those that were digested at different OLRs had dilatant behaviors (n > 1), which increased with increasing OLR. These results identified the apparent viscosity, yield stress, pH and OLR conditions that allow for the production and suppression of methane, as well as the conditions that guarantee the production of hydrogen.
Collapse
Affiliation(s)
| | - Luis A López-Escobar
- b Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana Xalapa , Ver. México
| | - Sergio Martínez-Hernández
- b Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana Xalapa , Ver. México
| | - Denis Cantú-Lozano
- a División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Orizaba , Orizaba , Ver. México
| | - Angel I Ortiz-Ceballos
- b Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana Xalapa , Ver. México
| |
Collapse
|
4
|
Feng G, Guo Y, Tan W. Effects of thermal hydrolysis temperature on physical characteristics of municipal sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:2018-2026. [PMID: 26606096 DOI: 10.2166/wst.2015.425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Effects of thermal hydrolysis temperature on the physical properties of municipal sludge was further studied by a series of experiments. There was a decrease in bound water content with an increase in hydrolysis temperature, while there was an increase in pH at temperatures below 120 °C, and a decrease at temperatures exceeding 120 °C. An analysis of settleability, centrifugation and vacuum filtration of the treated sludge indicated that the threshold temperature was 120 °C, which was the same as the temperature for the bound water content and particle size. In addition, raw sludge with a solids content of 100 g/L, exhibited significant non-Newtonian fluid characteristics. At thermal hydrolysis temperatures exceeding 120 °C, non-Newtonian fluid characteristics including liquid and solid characteristics were significantly weakened. The consistency index (k) decreased from 5.90 Pa·s to 0.068 Pa·s, while the flow index (n) increased from 0.31 to 0.74, suggesting that thermal hydrolysis sludge was much closer to Newtonian fluids compared to raw sludge. Modification of bound water content, particle size and viscosity with hydrolysis temperature, revealed the nature of improved dewaterability by thermal hydrolysis. The fractal dimension of the sludge floc increased from 2.74 to 2.90, meaning that the floc became more compact after thermal hydrolysis.
Collapse
Affiliation(s)
- Guohong Feng
- School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan, 030024, China
| | - Yabing Guo
- School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan, 030024, China
| | - Wei Tan
- School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China E-mail:
| |
Collapse
|
5
|
Vítěz T, Severa L. On the rheological characteristics of sewage sludge. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201058020287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Feng G, Liu L, Tan W. Effect of Thermal Hydrolysis on Rheological Behavior of Municipal Sludge. Ind Eng Chem Res 2014. [DOI: 10.1021/ie501488q] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guohong Feng
- School of Environment & Safety, Taiyuan University of Science & Technology, Taiyuan, China
- School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Liyan Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Wei Tan
- School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Mohapatra DP, Brar SK, Tyagi RD, Picard P, Surampalli RY. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:58-75. [PMID: 24140682 DOI: 10.1016/j.scitotenv.2013.09.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS.
Collapse
Affiliation(s)
- D P Mohapatra
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - S K Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - R D Tyagi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - P Picard
- Phytronix Technologies, 4535 Boulevard Wilfrid Hamel, Québec G1P 2J7, Canada
| | - R Y Surampalli
- US Environmental Protection Agency, P.O. Box 17-2141, Kansas City, KS 66117, USA
| |
Collapse
|
8
|
Guo J, Yang C, Peng L. Preparation and characteristics of bacterial polymer using pre-treated sludge from swine wastewater treatment plant. BIORESOURCE TECHNOLOGY 2013; 152:490-498. [PMID: 24333626 DOI: 10.1016/j.biortech.2013.11.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 06/03/2023]
Abstract
Sterilization, alkaline-thermal, and acid-thermal treatments were applied to different suspended sludge solids (SSS) concentrations and the pre-treated sludge was used as raw material for bioflocculant-producing bacteria R3 to produce bioflocculant. After 60 h of fermentation, three forms of bioflocculant (broth, capsular, and slime) were extracted, and maximum broth bioflocculant of 2.9 and 4.1 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 1.8 g L(-1) in acid-thermal treated sludge. Higher bioflocculant quantity was produced in SS of 15, 25, and 35 g L(-1) compared to that produced in SS of 45, 55, and 65 g L(-1). Bioflocculant combined with 0.5 g Ca(2+) in 1.0 L kaolin suspension acted as conditioning agent, and maximum flocculating activity of 94.5% and 92.8% was achieved using broth and slime bioflocculant, respectively. The results demonstrated that wastewater sludge could be used as sources to prepare bioflocculants.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China.
| | - Chunping Yang
- Zhejiang Provincial Key Laboratory of Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lanyan Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
9
|
Eshtiaghi N, Markis F, Yap SD, Baudez JC, Slatter P. Rheological characterisation of municipal sludge: a review. WATER RESEARCH 2013; 47:5493-5510. [PMID: 23899879 DOI: 10.1016/j.watres.2013.07.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 05/28/2023]
Abstract
Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important.
Collapse
Affiliation(s)
- Nicky Eshtiaghi
- Rheology and Materials Processing Centre, Dept. of Chemical Engineering, RMIT University, Victoria 3001, Australia.
| | | | | | | | | |
Collapse
|
10
|
Guo J, Yang C, Zeng G. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge. BIORESOURCE TECHNOLOGY 2013; 143:289-97. [PMID: 23810950 DOI: 10.1016/j.biortech.2013.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 05/22/2023]
Abstract
Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater.
Collapse
Affiliation(s)
- Junyuan Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | | |
Collapse
|
11
|
More TT, Yan S, Hoang NV, Tyagi RD, Surampalli RY. Bacterial polymer production using pre-treated sludge as raw material and its flocculation and dewatering potential. BIORESOURCE TECHNOLOGY 2012; 121:425-31. [PMID: 22868009 DOI: 10.1016/j.biortech.2012.06.075] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 05/26/2023]
Abstract
Sterilization, alkaline-thermal and acid-thermal treatments were applied to different sludge solids concentrations (17.0; 22.4; 29.8; 37.3; 44.8 g/L, respectively) and the pre-treated sludge was used as raw material for Serratia sp.1 to produce extracellular polymeric substances (EPS). After 72 h of fermentation, total EPS of 2.3 and 3.4 g/L were produced in sterilized and alkaline-thermal treated sludge as compared to that of 1.5 g/L in acid-thermal treated sludge. Lower EPS were produced at relatively higher solids concentrations (37.3; 44.8 g/L). Broth, crude forms of capsular and slime EPS were extracted from fermented broths and used as conditioning agents by combining with 150 mg of Ca(2+)/L of kaolin suspensions. Maximum flocculation activity of 79.1% and increased dewatering by 52.2% was achieved using broth and crude capsular EPS, respectively. The results demonstrated that EPS having high flocculating capability could be produced using wastewater sludge as sole raw material.
Collapse
Affiliation(s)
- T T More
- Institut national de la recherche scientifique, Centre Eau, Terre et, Environnement, Université du Québec, 490 de la Couronne, Québec (QC), G1K 9A9, Canada.
| | | | | | | | | |
Collapse
|
12
|
Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY. Parameter optimization of ferro-sonication pre-treatment process for degradation of bisphenol A and biodegradation from wastewater sludge using response surface model. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:100-107. [PMID: 21354701 DOI: 10.1016/j.jhazmat.2011.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 05/30/2023]
Abstract
In this study, the application of response surface model in predicting and optimizing the ferro-sonication pre-treatment for degradation of bisphenol A (BPA), an endocrine disrupter compound from wastewater sludge (WWS) was investigated. The ferro-sonication pre-treatment process was carried out according to central composite design (CCD) with four independent variables such as wastewater sludge solids concentration, pH, ultrasonication time and FeSO(4) concentration. The effect of ferro-sonication pre-treatment was assessed in terms of increase in sludge solids (suspended solids (SS) and volatile solids (VS)) and organic matter (chemical oxygen demand (COD) and soluble organic carbon (SOC)) solubilization and simultaneous BPA degradation from WWS. It was observed that among all the variables studied, ultrasonication time had more significantly affected the efficiency of the ferro-sonication pre-treatment process followed by FeSO(4) and solids concentration. Through this optimization process, it was found that maximum BPA degradation of 88% could be obtained with 163 min ultrasonication time, 2.71 mg/L FeSO(4) concentration, pH 2.81 with 22 g/L SS. Further, the effect of ferro-sonication pre-treatment on biodegradation of WWS was also studied. It was observed that ultrasonication time had significant effect and the higher biodegradation (32.48%) was observed at 180 min ultrasonication time.
Collapse
|
13
|
Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A. CHEMOSPHERE 2010; 78:923-41. [PMID: 20083294 DOI: 10.1016/j.chemosphere.2009.12.053] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 05/22/2023]
Abstract
Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.
Collapse
Affiliation(s)
- D P Mohapatra
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada G1K 9A9
| | | | | | | |
Collapse
|
14
|
Pham TTH, Brar SK, Tyagi RD, Surampalli RY. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge. ULTRASONICS SONOCHEMISTRY 2010; 17:38-45. [PMID: 19574083 DOI: 10.1016/j.ultsonch.2009.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/20/2009] [Accepted: 06/04/2009] [Indexed: 05/28/2023]
Abstract
The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.
Collapse
Affiliation(s)
- T T H Pham
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada
| | | | | | | |
Collapse
|
15
|
Pham TTH, Brar SK, Tyagi RD, Surampalli RY. Ultrasonication of wastewater sludge--consequences on biodegradability and flowability. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:891-898. [PMID: 18768255 DOI: 10.1016/j.jhazmat.2008.07.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/09/2008] [Accepted: 07/08/2008] [Indexed: 05/26/2023]
Abstract
The present study deals with pre-treatment of wastewater sludge by ultrasonic waves at frequency of 20 kHz using fully automated lab-scale ultrasonication equipment. Different wastewater sludge solids concentrations, ultrasonication intensities, and exposure times of pre-treatment were investigated for the optimization of ultrasonication treatment process. The parameters of pre-treatment process were optimized by using response surface methodology. A 2(3) central composite design was performed for optimization. The screening experiment step comprised steepest ascent methodology to determine optimal domain. The effect of ultrasonication treatment was assessed in terms of increase in soluble solids and the biodegradability of the wastewater sludge. In addition, rheological parameter of wastewater sludge, namely, viscosity was also measured to ascertain the suitability of wastewater sludge for conventional treatment processes as well as submerged fermentation, a major step for the production of value-added products from sludge. It was observed that the ultrasonication intensity and pre-treatment exposure time significantly affected the efficiency of the ultrasonication process followed by the solids concentration. The optimal conditions of ultrasonic pre-treatment were 0.75 W/cm(2) ultrasonication intensity, 60 min, and 23 g/L total solids concentration. The increases in soluble chemical oxygen demand and biodegradability, by aerobic sludge digestion process, in terms of total solids consumption increased by 45.5% and 56%, respectively. The flowability of ultrasonicated sludge in terms of viscosity showed exponential behaviour at different total solids concentrations, and pseudoplastic and thixotropic behaviour similar to raw sludge. Nevertheless, the magnitude of viscosity values of ultrasonicated sludge was always lower than the raw sludge.
Collapse
Affiliation(s)
- T T H Pham
- INRS-ETE, Université du Québec, 490 Rue de la Couronne, Québec, Canada
| | | | | | | |
Collapse
|
16
|
Barnabé S, Brar SK, Tyagi RD, Beauchesne I, Surampalli RY. Pre-treatment and bioconversion of wastewater sludge to value-added products--fate of endocrine disrupting compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:1471-88. [PMID: 19110297 DOI: 10.1016/j.scitotenv.2008.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/25/2008] [Accepted: 11/09/2008] [Indexed: 05/05/2023]
Abstract
Development of processes for the production of value added products (VAPs), such as biopesticides, microbial inoculants or industrial enzymes through biotransformation of raw or pre-treated wastewater sludge (WWS) has undergone a substantial progress over the last decade. WWS based VAPs are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, when WWS is used as a raw material for VAPs production, questions still remains on the persistence of organic pollutants within the biotransformed WWS, especially, endocrine disrupting compounds (EDCs) and the production of their toxic intermediates. WWS pre-treatment prior to biotransformation as well as the microbial strains used for biotransformation can possibly remove these organic pollutants. The literature findings concerning the impact of WWS pre-treatment and value added products on EDCs removal are reviewed in this paper. The microbial potential to degrade or detoxify EDCs and toxic intermediates concomitant with value-addition is also discussed. The concept of obtaining EDCs free-WWS based VAPs and simultaneously achieving the objective of pollution control is presented.
Collapse
Affiliation(s)
- S Barnabé
- Institut National de la Recherche Scientifique, Université du Québec, 490 rue de la Couronne, Québec, Québec, Canada G1K 9A9
| | | | | | | | | |
Collapse
|