1
|
Farber AE, Menascu S, Kalron A. The association of fear of falling and falls with sedentary behavior in people with multiple sclerosis. J Psychosom Res 2024; 181:111675. [PMID: 38652979 DOI: 10.1016/j.jpsychores.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Sedentary behavior, falls, and fear of falling (FoF) are specific concerns for people with MS (pwMS). Considering the relatively high incidence and potential linkage, it is surprising that this triple relationship has as yet not been extensively investigated in pwMS. Thus, the present study aimed to examine the correlates of sedentary behavior with FoF and falls in pwMS. METHODS Fifty pwMS, 30 women, were admitted to this cross-sectional study. Primary outcome measures included physical activity and sedentary behavior metrics measured by accelerometry, fall status, and FoF. Additional measures included mobility clinical tests, cognition, perceived fatigue, depression, and anxiety. The sample was divided into two subgroups according to the daily Metabolic Equivalent of Task (MET) rate scores; <1.5 was defined as sedentary, ≥1.5 were defined as non-sedentary. Multivariate analysis of variance and linear regression analyses assessed the relationships by using an alpha of 0.05. RESULTS Sixty-four percent of the sample were classified as sedentary. The sedentary subgroup reported more FoF than the non-sedentary subgroup (32.5 (S·D. = 11.3) vs. 29.9 (S.D. = 9.5); however, no differences were found in fall status between the subgroups. No differences were found for depression, anxiety, cognition, and perceived fatigue between the subgroups. Furthermore, according to the linear regression analysis, FoF explained 23.9% of the variance pertaining to the daily MET rate when controlling for age, gender, disease duration, and disability. CONCLUSIONS Clinicians are encouraged to incorporate the issue of FoF during standard management, which may represent an opportunity to improve care and reduce sedentary behavior in pwMS.
Collapse
Affiliation(s)
- Adi Einav Farber
- Department of Physical Therapy, School of Health Professions, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel.
| | - Alon Kalron
- Department of Physical Therapy, School of Health Professions, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel; Multiple Sclerosis Center, Sheba Medical Center, Tel Hashomer, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Yaqoob I, Gusso S, Simpson M, Meiring RM. Agreement between the activPAL accelerometer and direct observation during a series of gait and sit-to-stand tasks in people living with cervical dystonia. Front Neurol 2024; 15:1286447. [PMID: 38725651 PMCID: PMC11080616 DOI: 10.3389/fneur.2024.1286447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Background Accelerometers are commonly used for the assessment of PA; however, these devices have not been validated in people with dystonia who experience movement limitations. To properly understand movement behaviors and deliver accurate exercise prescription in this population, the validity of these devices must be tested. Objective This study aimed to validate step count and postural transitions detected by the activPAL accelerometer (AP) against direct observation (DO) during two functional assessments: the 30-s sit-to-stand (30STS) and 6-min usual-pace walk tests. Methods: A total of 11 participants with cervical dystonia (CD) (male/female n = 5/6; mean age = 61 years; BMI = 24 kg/m2) performed the 6-min usual pace walking and 30STS while wearing the activPAL. A trained observer counted steps and observed the number of sit-to-stands. Results The average step count detected with AP and DO was 651.8 (218-758) and 654.5 (287-798) respectively. The average transitions detected were 11 (4-16) and 12 (4-17) respectively. Both methods showed good agreement and there was a statistically significant and strong correlation between the two methods, i.e., transitions (r = 0.983, p = 0.0001), and step counts (r = 0.9841, p = 0.0001). Conclusion There is a good agreement between activPAL and direct observation for step counts and transitions between sitting and standing in people living with CD.
Collapse
Affiliation(s)
- Irum Yaqoob
- Department of Exercise Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Silmara Gusso
- Department of Exercise Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Mark Simpson
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca M. Meiring
- Department of Exercise Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
3
|
Suau Q, Bianchini E, Bellier A, Chardon M, Milane T, Hansen C, Vuillerme N. Current Knowledge about ActiGraph GT9X Link Activity Monitor Accuracy and Validity in Measuring Steps and Energy Expenditure: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:825. [PMID: 38339541 PMCID: PMC10857518 DOI: 10.3390/s24030825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Over recent decades, wearable inertial sensors have become popular means to quantify physical activity and mobility. However, research assessing measurement accuracy and precision is required, especially before using device-based measures as outcomes in trials. The GT9X Link is a recent activity monitor available from ActiGraph, recognized as a "gold standard" and previously used as a criterion measure to assess the validity of various consumer-based activity monitors. However, the validity of the ActiGraph GT9X Link is not fully elucidated. A systematic review was undertaken to synthesize the current evidence for the criterion validity of the ActiGraph GT9X Link in measuring steps and energy expenditure. This review followed the PRISMA guidelines and eight studies were included with a combined sample size of 558 participants. We found that (1) the ActiGraph GT9X Link generally underestimates steps; (2) the validity and accuracy of the device in measuring steps seem to be influenced by gait speed, device placement, filtering process, and monitoring conditions; and (3) there is a lack of evidence regarding the accuracy of step counting in free-living conditions and regarding energy expenditure estimation. Given the limited number of included studies and their heterogeneity, the present review emphasizes the need for further validation studies of the ActiGraph GT9X Link in various populations and in both controlled and free-living settings.
Collapse
Affiliation(s)
- Quentin Suau
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France; (Q.S.); (A.B.); (M.C.); (T.M.); (C.H.)
| | - Edoardo Bianchini
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France; (Q.S.); (A.B.); (M.C.); (T.M.); (C.H.)
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy
| | - Alexandre Bellier
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France; (Q.S.); (A.B.); (M.C.); (T.M.); (C.H.)
- CHU Grenoble Alpes, Université Grenoble Alpes, Inserm CIC 1406, 38000 Grenoble, France
| | - Matthias Chardon
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France; (Q.S.); (A.B.); (M.C.); (T.M.); (C.H.)
- UNESP Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Bauru Sao Paulo State University, Bauru 17033-360, SP, Brazil
| | - Tracy Milane
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France; (Q.S.); (A.B.); (M.C.); (T.M.); (C.H.)
| | - Clint Hansen
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France; (Q.S.); (A.B.); (M.C.); (T.M.); (C.H.)
- Department of Neurology, Kiel University, 24105 Kiel, Germany
| | - Nicolas Vuillerme
- AGEIS, Université Grenoble Alpes, 38000 Grenoble, France; (Q.S.); (A.B.); (M.C.); (T.M.); (C.H.)
- LabCom Telecom4Health, Orange Labs & Université Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, 38000 Grenoble, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
4
|
Brandenbarg P, Hoekstra F, Barakou I, Seves BL, Hettinga FJ, Hoekstra T, van der Woude LHV, Dekker R, Krops LA. Measurement properties of device-based physical activity instruments in ambulatory adults with physical disabilities and/or chronic diseases: a scoping review. BMC Sports Sci Med Rehabil 2023; 15:115. [PMID: 37735403 PMCID: PMC10512652 DOI: 10.1186/s13102-023-00717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND People with physical disabilities and/or chronic diseases tend to have an inactive lifestyle. Monitoring physical activity levels is important to provide insight on how much and what types of activities people with physical disabilities and/or chronic diseases engage in. This information can be used as input for interventions to promote a physically active lifestyle. Therefore, valid and reliable physical activity measurement instruments are needed. This scoping review aims 1) to provide a critical mapping of the existing literature and 2) directions for future research on measurement properties of device-based instruments assessing physical activity behavior in ambulant adults with physical disabilities and/or chronic diseases. METHODS Four databases (MEDLINE, CINAHL, Web of Science, Embase) were systematically searched from 2015 to April 16th 2023 for articles investigating measurement properties of device-based instruments assessing physical activity in ambulatory adults with physical disabilities and/or chronic diseases. For the majority, screening and selection of eligible studies were done in duplicate. Extracted data were publication data, study data, study population, device, studied measurement properties and study outcome. Data were synthesized per device. RESULTS One hundred three of 21566 Studies were included. 55 Consumer-grade and 23 research-grade devices were studied on measurement properties, using 14 different physical activity outcomes, in 23 different physical disabilities and/or chronic diseases. ActiGraph (n = 28) and Fitbit (n = 39) devices were most frequently studied. Steps (n = 68) was the most common used physical activity outcome. 97 studies determined validity, 11 studies reliability and 6 studies responsiveness. CONCLUSION This scoping review shows a large variability in research on measurement properties of device-based instruments in ambulatory adults with physical disabilities and/or chronic diseases. The variability highlights a need for standardization of and consensus on research in this field. The review provides directions for future research.
Collapse
Affiliation(s)
- Pim Brandenbarg
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands.
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands.
| | - Femke Hoekstra
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ioulia Barakou
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Bregje L Seves
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Florentina J Hettinga
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, NE1 8ST, UK
| | - Trynke Hoekstra
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Health Sciences and Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Lucas H V van der Woude
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Rienk Dekker
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Leonie A Krops
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| |
Collapse
|
5
|
Woelfle T, Bourguignon L, Lorscheider J, Kappos L, Naegelin Y, Jutzeler CR. Wearable Sensor Technologies to Assess Motor Functions in People With Multiple Sclerosis: Systematic Scoping Review and Perspective. J Med Internet Res 2023; 25:e44428. [PMID: 37498655 PMCID: PMC10415952 DOI: 10.2196/44428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Wearable sensor technologies have the potential to improve monitoring in people with multiple sclerosis (MS) and inform timely disease management decisions. Evidence of the utility of wearable sensor technologies in people with MS is accumulating but is generally limited to specific subgroups of patients, clinical or laboratory settings, and functional domains. OBJECTIVE This review aims to provide a comprehensive overview of all studies that have used wearable sensors to assess, monitor, and quantify motor function in people with MS during daily activities or in a controlled laboratory setting and to shed light on the technological advances over the past decades. METHODS We systematically reviewed studies on wearable sensors to assess the motor performance of people with MS. We scanned PubMed, Scopus, Embase, and Web of Science databases until December 31, 2022, considering search terms "multiple sclerosis" and those associated with wearable technologies and included all studies assessing motor functions. The types of results from relevant studies were systematically mapped into 9 predefined categories (association with clinical scores or other measures; test-retest reliability; group differences, 3 types; responsiveness to change or intervention; and acceptability to study participants), and the reporting quality was determined through 9 questions. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. RESULTS Of the 1251 identified publications, 308 were included: 176 (57.1%) in a real-world context, 107 (34.7%) in a laboratory context, and 25 (8.1%) in a mixed context. Most publications studied physical activity (196/308, 63.6%), followed by gait (81/308, 26.3%), dexterity or tremor (38/308, 12.3%), and balance (34/308, 11%). In the laboratory setting, outcome measures included (in addition to clinical severity scores) 2- and 6-minute walking tests, timed 25-foot walking test, timed up and go, stair climbing, balance tests, and finger-to-nose test, among others. The most popular anatomical landmarks for wearable placement were the waist, wrist, and lower back. Triaxial accelerometers were most commonly used (229/308, 74.4%). A surge in the number of sensors embedded in smartphones and smartwatches has been observed. Overall, the reporting quality was good. CONCLUSIONS Continuous monitoring with wearable sensors could optimize the management of people with MS, but some hurdles still exist to full clinical adoption of digital monitoring. Despite a possible publication bias and vast heterogeneity in the outcomes reported, our review provides an overview of the current literature on wearable sensor technologies used for people with MS and highlights shortcomings, such as the lack of harmonization, transparency in reporting methods and results, and limited data availability for the research community. These limitations need to be addressed for the growing implementation of wearable sensor technologies in clinical routine and clinical trials, which is of utmost importance for further progress in clinical research and daily management of people with MS. TRIAL REGISTRATION PROSPERO CRD42021243249; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=243249.
Collapse
Affiliation(s)
- Tim Woelfle
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Lucie Bourguignon
- Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Johannes Lorscheider
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Yvonne Naegelin
- Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|