1
|
Schalli M, Platzer S, Haas D, Reinthaler FF. The behaviour of Escherichia coli and Pseudomonas aeruginosa in bottled mineral water. Heliyon 2023; 9:e21634. [PMID: 38027778 PMCID: PMC10643266 DOI: 10.1016/j.heliyon.2023.e21634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Microbial contamination of bottled water during the filling and capping procedure is a problem which should be avoided. The examination of the influence of carbon dioxide (CO2) on bacterial growth of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) in bottled mineral water was the aim of this study. Commercially available glass bottles with plastic screw caps filled with natural mineral water (without additional CO2 "still" (StMW) and with CO2 "sparkling" (SpMW) were obtained from a manufacturer in the province of Styria, Austria. The artificial contamination was performed in the lab by opening the bottle with subsequent addition of a bacterial solution with a defined number of bacteria. For each bacterial strain, 12 bottles were prepared. Samples (100 mL) were taken after a specific number of days, filtrated and placed on Endo Agar for cultivation. After incubation for 24 h bacterial colonies were counted. In this study CO2 addition to bottled water reduced colony forming units of the two investigated bacterial strains over time.
Collapse
Affiliation(s)
- Michael Schalli
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Sabine Platzer
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Doris Haas
- Applied Hygiene and Aerobiology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Franz F. Reinthaler
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010, Graz, Austria
| |
Collapse
|
2
|
Schalli M, Platzer S, Schmutz R, Ofner-Kopeinig P, Reinthaler FF, Haas D. Dissolved Carbon Dioxide: The Lifespan of Staphylococcus aureus and Enterococcus faecalis in Bottled Carbonated Mineral Water. BIOLOGY 2023; 12:biology12030432. [PMID: 36979124 PMCID: PMC10045048 DOI: 10.3390/biology12030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
During the process of mineral water production, many possible contamination settings can influence the quality of bottled water. Microbial contamination can originate from different sources, for example, the ambient air, the bottles, the caps, and from the bottling machine itself. The aim of this study was to investigate the influence of three different carbon dioxide (CO2) concentrations (3.0 g/L, 5.5 g/L, and 7.0 g/L; 20 bottles each) in bottled mineral water on the bacterial growth of Staphylococcus aureus (S. aureus) and Enterococcus faecalis (Ent. faecalis). The examined mineral water was artificially contaminated before capping the bottles inside the factory. After a specific number of days, water samples were taken from freshly opened bottles and after filtration (100 mL), filters were placed on Columbia Agar with 5% Sheep blood to cultivate S. aureus and Slanetz and Bartley Agar to cultivate Ent. faecalis. The respective colony-forming units (CFU) were counted after incubation times ranging from 24 to 120 h. Colony-forming units of S. aureus were not detectable after the 16th and 27th day, whereas Ent. faecalis was not cultivable after the 5th and 13th day when stored inside the bottles. The investigation of the bottles that were stored open for a certain amount of time with CO2 bubbling out showed only single colonies for S. aureus after the 5th day and no CFUs for Ent. faecalis after the 17th day. A reduction in the two investigated bacterial strains during storage in carbonated mineral water bottles means that a proper standardized disinfection and cleaning procedure, according to valid hygiene standards of industrial bottling machines, cannot be replaced by carbonation.
Collapse
Affiliation(s)
- Michael Schalli
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-73610
| | - Sabine Platzer
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Rainer Schmutz
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Petra Ofner-Kopeinig
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8010 Graz, Austria
| | - Franz F. Reinthaler
- Department for Water-Hygiene and Micro-Ecology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Doris Haas
- Applied Hygiene and Aerobiology, D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
3
|
Al-Otoum F, Al-Ghouti MA, Costa OS, Khraisheh M. Impact of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) containers into bottled water in Qatar. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:631. [PMID: 29129001 DOI: 10.1007/s10661-017-6342-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Prosperity in Qatar and the consequent stresses on water resources resulted in a sustainable increase in the bottled drinking water market. Reports on health concerns and possible migration of chemicals from the plastic material into the water have driven the current investigation. This study aims to address the extent of antimony (Sb) leaching from polyethylene terephthalate (PET) water bottles subject to temperature variations (24-50 °C) due to Qatar's hot climate and improper storage conditions. A representative basket including 66 different imported and locally produced water bottles was considered. The concentrations of Sb in bottled water ranged from 0.168 to 2.263 μg/L at 24 °C and from 0.240 to 6.110 μg/L at 50 °C. Antimony concentrations in PET bottles at 24 °C was significantly lower than those at 50 °C (p = 0.0142), indicating that the temperature was a principal factor affecting the release of Sb from the plastic into the water. Although the detected Sb amounts were below the guidelines endorsed by WHO and Qatar (standard 5 μg/L) at 24 °C, the concentration measured at 50 °C was higher than the recommended WHO values (6.11 μg/L).
Collapse
Affiliation(s)
- Fatima Al-Otoum
- Ministry of Public Health, Public Health Department, P.O. Box: 42, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Ozeas S Costa
- School of Earth Sciences, The Ohio State University at Mansfield, 395 Ovalwood Hall, 1760 University Drive, Mansfield, OH, 44906, USA
| | - Majeda Khraisheh
- Chemical Engineering Department, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
4
|
Hansen T, Skånseng B, Hoorfar J, Löfström C. Evaluation of direct 16S rDNA sequencing as a metagenomics-based approach to screening bacteria in bottled water. Biosecur Bioterror 2014; 11 Suppl 1:S158-65. [PMID: 23971801 DOI: 10.1089/bsp.2012.0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deliberate or accidental contamination of food, feed, and water supplies poses a threat to human health worldwide. A rapid and sensitive detection technique that could replace the current labor-intensive and time-consuming culture-based methods is highly desirable. In addition to species-specific assays, such as PCR, there is a need for generic methods to screen for unknown pathogenic microorganisms in samples. This work presents a metagenomics-based direct-sequencing approach for detecting unknown microorganisms, using Bacillus cereus (as a model organism for B. anthracis) in bottled water as an example. Total DNA extraction and 16S rDNA gene sequencing were used in combination with principle component analysis and multicurve resolution to study detection level and possibility for identification. Results showed a detection level of 10(5) to 10(6) CFU/L. Using this method, it was possible to separate 2 B. cereus strains by the principal component plot, despite the close sequence resemblance. A linear correlation between the artificial contamination level and the relative amount of the Bacillus artificial contaminant in the metagenome was observed, and a relative amount value above 0.5 confirmed the presence of Bacillus. The analysis also revealed that background flora in the bottled water varied between the different water types that were included in the study. This method has the potential to be adapted to other biological matrices and bacterial pathogens for fast screening of unknown bacterial threats in outbreak situations.
Collapse
|