1
|
Zhao N, Lian X, Du J, Ren H, Zhao T, Lu Q, Li Y, Cui F, Qin T. Respiratory tract bacteria distribution and transmission patterns among individuals in close contact. BMC Infect Dis 2024; 24:1289. [PMID: 39538143 PMCID: PMC11562301 DOI: 10.1186/s12879-024-10019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Respiratory disease outbreaks frequently occur in settings where individuals are in close contact, for example, schools and factories. However, the transmission patterns of oropharyngeal microbiota among healthy individuals living in clusters are unclear. Therefore, we aimed to investigate the respiratory tract bacteria distribution and transmission patterns among individuals in close contact. METHODS A total of 36 freshmen from Peking University Medical School participated in the study. We collected pharyngeal swabs on the first day of enrollment, 15, 30, and 60 days after cohabitation. DNA was extracted from the swabs and subjected to high-throughput sequencing to profile the microbial composition. Statistical analyses were performed to assess diversity and significance. RESULTS Neisseriaceae, Prevotellaceae, and Streptococcaceae were the most abundant bacterial families detected. Over time, changes were observed in the bacterial communities, with a tendency for increased similarity between dormitory room members. By day 60 of cohabitation, the bacterial communities appeared to be more similar compared to the baseline (prior to cohabitation). The transmission patterns included spreading with colonization, spreading without colonization, and non-spreading. Bacteria belonging to the core genera are most likely to spread and colonize easily. CONCLUSION The risk of healthy cohabitants acquiring respiratory pathogens through close contact may be overestimated in epidemiological studies. Therefore, monitoring the spread of core genera that are easily transmitted and colonized is crucial for effective prevention of respiratory pathogen transmission.
Collapse
Affiliation(s)
- Na Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
| | - Xingxing Lian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
- Wuxi Liangxi District Center for Disease Control and Prevention, Jiangsu, 214000, China
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Hongyu Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
| | - Tianshuo Zhao
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Qingbin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Yinan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Tian Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China.
| |
Collapse
|
2
|
Sun X, Lin X, Yao J, Tian T, Li Z, Chen S, Hu W, Jiang J, Tang H, Cai H, Guo T, Chen X, Chen Z, Zhang M, Sun Y, Lin S, Qu Y, Deng X, Lin Z, Xia L, Jin Y, Zhang W. Potential causal links of long-term exposure to PM 2.5 and its chemical components with the risk of nasopharyngeal carcinoma recurrence: A 10-year cohort study in South China. Int J Cancer 2024; 155:1558-1566. [PMID: 38863244 DOI: 10.1002/ijc.35047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
There is a lack of evidence from cohort studies on the causal association of long-term exposure to ambient fine particulate matter (PM2.5) and its chemical components with the risk of nasopharyngeal carcinoma (NPC) recurrence. Based on a 10-year prospective cohort of 1184 newly diagnosed NPC patients, we comprehensively evaluated the potential causal links of ambient PM2.5 and its chemical components including black carbon (BC), organic matter (OM), sulfate (SO4 2-), nitrate (NO3 -), and ammonium (NH4 +) with the recurrence risk of NPC using a marginal structural Cox model adjusted with inverse probability weighting. We observed 291 NPC patients experiencing recurrence during the 10-year follow-up and estimated a 33% increased risk of NPC recurrence (hazard ratio [HR]: 1.33, 95% confidence interval [CI]: 1.02-1.74) following each interquartile range (IQR) increase in PM2.5 exposure. Each IQR increment in BC, NH4 +, OM, NO3 -, and SO4 2- was associated with HRs of 1.36 (95%CI: 1.13-1.65), 1.35 (95%CI: 1.07-1.70), 1.33 (95%CI: 1.11-1.59), 1.32 (95%CI: 1.06-1.64), 1.31 (95%CI: 1.08-1.57). The elderly, patients with no family history of cancer, no smoking history, no drinking history, and those with severe conditions may exhibit a greater likelihood of NPC recurrence following exposure to PM2.5 and its chemical components. Additionally, the effect estimates of the five components are greater among patients who were exposed to high concentration than in the full cohort of patients. Our study provides solid evidence for a potential relationship between long-term exposure to PM2.5 and its components and the risk of NPC recurrence.
Collapse
Affiliation(s)
- Xurui Sun
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xiao Lin
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jijin Yao
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Biomedical Imaging, Zhuhai, China
| | - Tian Tian
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Li
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Weihua Hu
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Jie Jiang
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Hui Tang
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Huanle Cai
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Tong Guo
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Xudan Chen
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhibing Chen
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Man Zhang
- Hospital Infection Control Office, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yongqing Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinlei Deng
- Analytics Department, Novartis Pharmaceuticals UK Ltd, Novartis Pharma AG, London, UK
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Liangping Xia
- VIP Region, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanan Jin
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Biomedical Imaging, Zhuhai, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Health & Research Center for Health Information & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Sundas A, Contreras I, Mujahid O, Beneyto A, Vehi J. The Effects of Environmental Factors on General Human Health: A Scoping Review. Healthcare (Basel) 2024; 12:2123. [PMID: 39517336 PMCID: PMC11545045 DOI: 10.3390/healthcare12212123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The external environment constantly influences human health through many factors, including air quality, access to green spaces, exposure to pollutants, and climate change. Contamination poses a substantial threat to human well-being; conversely, environmental factors also positively impact health. The purpose of this study is to provide a comprehensive review of the complex relationship between various environmental factors and human health. While individual studies have explored specific aspects, a broader integrative understanding is lacking. Methods: Through databases (PubMed, Cochrane, Copernicus), 4888 papers were identified, with 166 selected for detailed analysis. Results: We summarized recent research, identifying multiple associations between environmental factors such as air pollution, climate change, solar radiation, and meteorological conditions and their impact on various health outcomes, including respiratory, cardiovascular, metabolic and gastrointestinal, renal and urogenital, neurological and psychological health, infectious and skin diseases, and major cancers. We use chord diagrams to illustrate these links. We also show the interaction between different environmental factors. Findings begin with exploring the direct impact of environmental factors on human health; then, the interplay and combined effects of environmental factors, elucidating their (often indirect) interaction and collective contribution to human health; and finally, the implications of climate change on human health. Conclusions: Researchers and policymakers need to consider that individuals are exposed to multiple pollutants simultaneously, the "multipollutant exposure phenomenon". It is important to study and regulate environmental factors by considering the combined impact of various pollutants rather than looking at each pollutant separately. We emphasize actionable recommendations and solutions.
Collapse
Affiliation(s)
- Amina Sundas
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Ivan Contreras
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Omer Mujahid
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Aleix Beneyto
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Josep Vehi
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 17003 Girona, Spain
| |
Collapse
|
4
|
Luo R, Zhang T, Wang L, Feng Y. Emissions and mitigation potential of endocrine disruptors during outdoor exercise: Fate, transport, and implications for human health. ENVIRONMENTAL RESEARCH 2023; 236:116575. [PMID: 37487926 DOI: 10.1016/j.envres.2023.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The endocrine system is responsible for secreting and controlling hormones crucial in regulating key body activities. However, endocrine disruptors or endocrine-disrupting chemicals (EDCs) can harm human health and well-being by interfering with this complex process. This report seeks to assess the present state of understanding about endocrine disruptors in China, including their origins, impacts, and obstacles, and to provide actionable recommendations for reducing exposure and mitigating negative effects. Strong negative correlations between ANOE and rural ecological compensation (REC) and a negative correlation between ANOE and forest coverage (FC) were found in this analysis of the relationships between agricultural nitrous oxide emissions (ANOE), agricultural methane emissions (AME), and land use and land cover variables (LUPC). Just as LUPC is significantly inversely related to FC, AME is positively related. The team uses a gradient-boosted model (GBM) with a Gaussian loss function and fine-tunes the model's parameters to achieve optimal performance and reliable prediction results. With a relative relevance score of 90.36 for ANOE and 67.64 for AME, the analysis shows that LUPC is the most important factor in influencing emission levels. This study aims to increase knowledge of endocrine disruptors' potential advantages and disadvantages in outdoor exercise. The study aims to aid in preventing and managing many diseases and disorders caused by hormonal imbalances or disruptions by examining the origins, effects, and potential mitigation of these substances during outdoor activity. Safe and healthful outdoor exercise is promoted by the study's efforts to discover and implement effective and sustainable solutions to decrease emissions and exposure to endocrine disruptors. This comprehensive study aims to promote a healthier and more sustainable environment for individuals engaging in outdoor exercise by synthesizing current knowledge, providing practical recommendations, and emphasizing the importance of awareness and action.
Collapse
Affiliation(s)
- Rui Luo
- Chengdu Sport University, Tiyuan Road, Chengdu, Sichuan Province, 610041, China; College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China.
| | - Tao Zhang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Li Wang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Yong Feng
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| |
Collapse
|
5
|
Paulo AC, Lança J, Almeida ST, Hilty M, Sá-Leão R. The upper respiratory tract microbiota of healthy adults is affected by Streptococcus pneumoniae carriage, smoking habits, and contact with children. MICROBIOME 2023; 11:199. [PMID: 37658443 PMCID: PMC10474643 DOI: 10.1186/s40168-023-01640-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND The microbiota of the upper respiratory tract is increasingly recognized as a gatekeeper of respiratory health. Despite this, the microbiota of healthy adults remains understudied. To address this gap, we investigated the composition of the nasopharyngeal and oropharyngeal microbiota of healthy adults, focusing on the effect of Streptococcus pneumoniae carriage, smoking habits, and contact with children. RESULTS Differential abundance analysis indicated that the microbiota of the oropharynx was significantly different from that of the nasopharynx (P < 0.001) and highly discriminated by a balance between the classes Negativicutes and Bacilli (AUC of 0.979). Moreover, the oropharynx was associated with a more homogeneous microbiota across individuals, with just two vs. five clusters identified in the nasopharynx. We observed a shift in the nasopharyngeal microbiota of carriers vs. noncarriers with an increased relative abundance of Streptococcus, which summed up to 30% vs. 10% in noncarriers and was not mirrored in the oropharynx. The oropharyngeal microbiota of smokers had a lower diversity than the microbiota of nonsmokers, while no differences were observed in the nasopharyngeal microbiota. In particular, the microbiota of smokers, compared with nonsmokers, was enriched (on average 16-fold) in potential pathogenic taxa involved in periodontal diseases of the genera Bacillus and Burkholderia previously identified in metagenomic studies of cigarettes. The microbiota of adults with contact with children resembled the microbiota of children. Specifically, the nasopharyngeal microbiota of these adults had, on average, an eightfold increase in relative abundance in Streptococcus sp., Moraxella catarrhalis, and Haemophilus influenzae, pathobionts known to colonize the children's upper respiratory tract, and a fourfold decrease in Staphylococcus aureus and Staphylococcus lugdunensis. CONCLUSIONS Our study showed that, in adults, the presence of S. pneumoniae in the nasopharynx is associated with a shift in the microbiota and dominance of the Streptococcus genus. Furthermore, we observed that smoking habits are associated with an increase in bacterial genera commonly linked to periodontal diseases. Interestingly, our research also revealed that adults who have regular contact with children have a microbiota enriched in pathobionts frequently carried by children. These findings collectively contribute to a deeper understanding of how various factors influence the upper respiratory tract microbiota in adults. Video Abstract.
Collapse
Affiliation(s)
- A Cristina Paulo
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - João Lança
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sónia T Almeida
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Markus Hilty
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química E Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
6
|
Vieceli T, Tejada S, Martinez-Reviejo R, Pumarola T, Schrenzel J, Waterer GW, Rello J. Impact of air pollution on respiratory microbiome: A narrative review. Intensive Crit Care Nurs 2022. [DOI: 10.1016/j.iccn.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Derman W, Badenhorst M, Eken M, Gomez-Ezeiza J, Fitzpatrick J, Gleeson M, Kunorozva L, Mjosund K, Mountjoy M, Sewry N, Schwellnus M. Risk factors associated with acute respiratory illnesses in athletes: a systematic review by a subgroup of the IOC consensus on ‘acute respiratory illness in the athlete’. Br J Sports Med 2022; 56:639-650. [DOI: 10.1136/bjsports-2021-104795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/18/2022]
Abstract
ObjectiveTo review risk factors associated with acute respiratory illness (ARill) in athletes, including non-infectious ARill and suspected or confirmed acute respiratory infections (ARinf).DesignSystematic review.Data sourcesElectronic databases: PubMed-Medline, EbscoHost and Web of Science.Eligibility criteriaOriginal research articles published between January 1990 and July 2020 in English were searched for prospective and retrospective full text studies that reported quantitative data on risk factors associated with ARill/ARinf in athletes, at any level of performance (elite/non-elite), aged 15–65 years.Results48 studies (n=19 390 athletes) were included in the study. Risk factors associated with ARill/ARinf were: increased training monotony, endurance training programmes, lack of tapering, training during winter or at altitude, international travel and vitamin D deficits. Low tear-(SIgA) and salivary-(IgA) were immune biomarkers associated with ARill/ARinf.ConclusionsModifiable training and environmental risk factors could be considered by sports coaches and athletes to reduce the risk of ARill/ARinf. Clinicians working with athletes can consider assessing and treating specific nutritional deficiencies such as vitamin D. More research regarding the role and clinical application of measuring immune biomarkers in athletes at high risk of ARill/ARinf is warranted.PROSPERO registration numberCRD42020160928.
Collapse
|
8
|
Yang F, Gao Y, Zhao H, Li J, Cheng X, Meng L, Dong P, Yang H, Chen S, Zhu J. Revealing the distribution characteristics of antibiotic resistance genes and bacterial communities in animal-aerosol-human in a chicken farm: From One-Health perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112687. [PMID: 34438267 DOI: 10.1016/j.ecoenv.2021.112687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics in breeding industry can enter the environment through multiple pathways, thus accelerating the emergence and spread of antibiotic resistance genes (ARGs), among which aerosol transmission is easily achieved and often overlooked. To elucidate the role of aerosols in this situation, the present study investigated the distribution characteristics of 107 ARG subtypes (targeting to eight different ARG types) and nine mobile genetic elements (MGEs) and bacterial community in animal (chicken cloaca), environment (aerosols) and human (nasopharynx) of a chicken farm (n = 42) in Henan Province. In total, 116 ARG subtypes and MGEs were identified in the poultry farm. The total bacterial concentration of aerosols inside the chicken house (3.117 × 104 CFU/m3) exceeded the corresponding limit. The microbial communities in the samples of cloaca swab (C) and the workers' nasopharyngeal swab (N) were closer, while the abundance distribution of ARGs/ MGEs in cloacal swab (C) and aerosol (AI) in chicken house were much similar. There were certain consistency of the microbial community structure and the distribution of ARGs among the three groups of chicken cloaca, air aerosol, and workers' nasopharynx. Our results highlighted that animal breeding does have a certain impact on the surrounding environment and human, and aerosols play an important role in this process.
Collapse
Affiliation(s)
- Fan Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou 450001, Henan, China
| | - Hongcheng Zhao
- Qingpu District Center for Disease Control and Prevention, Shanghai 201799, China
| | - Jinlei Li
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lei Meng
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Peng Dong
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jingyuan Zhu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
9
|
Wang Q, Lin X, Xiang X, Liu W, Fang Y, Chen H, Tang F, Guo H, Chen D, Hu X, Wu Q, Zhu B, Xia J. Oropharyngeal Probiotic ENT-K12 Prevents Respiratory Tract Infections Among Frontline Medical Staff Fighting Against COVID-19: A Pilot Study. Front Bioeng Biotechnol 2021; 9:646184. [PMID: 34249878 PMCID: PMC8264449 DOI: 10.3389/fbioe.2021.646184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Healthcare workers at the frontline are facing a substantial risk of respiratory tract infection during the COVID-19 outbreak due to an extremely stressful work schedule and public health event. A well-established first-line defense on oropharyngeal microbiome could be a promising strategy to protect individuals from respiratory tract infections including COVID-19. The most thoroughly studied oropharyngeal probiotic product which creates a stable upper respiratory tract microbiota capable of preventing upper respiratory tract infections was chosen to evaluate the safety and efficacy on reducing episodes of upper respiratory tract infections for COVID-19 healthcare workers. To our knowledge to date, this is the very first study describing the beneficial effects of oropharyngeal probiotic been administered by healthcare workers during the COVID-19 pandemic. In this randomized controlled trial, we provided the probiotics to frontline medical staff who work in the hospitals in Wuhan and had been in close contact with hospitalized COVID-19 patients for prophylactic use on a daily basis. Our finding suggests that oropharyngeal probiotic administration significantly reduced the incidence of respiratory tract infections by 64.8%, reduced the time experiencing respiratory tract infections and oral ulcer symptoms by 78%, shortened the days absent from work by 95.5%, and reduced the time under medication where there is no record of antibiotic and anti-viral drug intake in the probiotic group. Furthermore, medical staff treated with Bactoblis experienced sustained protection from respiratory tract infections since the 10th day of oropharyngeal probiotic administration resulting in an extremely low incidence rate of respiratory tract infections.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xuan Lin
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Fang
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Haiping Chen
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Fang Tang
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongyan Guo
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Di Chen
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiafen Hu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Junbo Xia
- Department of Pulmonary Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|