1
|
Mahmudiono T, Fakhri Y, Ranaei V, Pilevar Z, Limam I, Sahlabadi F, Rezaeiarshad N, Torabbeigi M, Jalali S. Concentration of Tetrabromobisphenol-A in fish: systematic review and meta-analysis and probabilistic health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2025; 40:63-83. [PMID: 38386608 DOI: 10.1515/reveh-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Tetrabromobisphenol A (TBBP-A) is an emerging pollutant that enters water resources and affects various marine organisms, such as fish. Consequently, numerous studies globally investigated TBBP-A concentrations in fish fillets of the current study were meta-analyze concentration of TBBP-A in fish fillets and estimate the associated health risks for consumers. The search encompassed international databases, including Science Direct, PubMed, Scopus, Embase, and Web of Science from January 1, 2005, to July 20, 2023. The ranking of countries based on the pooled (Mean) concentration of TBBP-A in fish was as follows: China (1.157 µg/kg-ww) > Czech Republic (1.027 µg/kg-ww) > France (0.500 µg/kg-ww) ∼ Switzerland (0.500 µg/kg-ww) > Netherlands (0.405 µg/kg-ww) > Germany (0.33 µg/kg-ww) > Sweden (0.165 µg/kg-ww)>UK (0.078 µg/kg-ww) > Belgium (0.065 µg/kg-ww) > South Korea (0.013 µg/kg-ww) ∼ Japan (0.013 µg/kg-ww) > Ireland (0.005 µg/kg-ww). The risk assessment showed that the carcinogenic and non-carcinogenic risks of TBBP-A in China and France are higher compared to other countries; however, within all countries, these risks were found to be within acceptable limits.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, 148005 Universitas Airlangga , Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, 14656 Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Zahra Pilevar
- School of Health, 48412 Arak University of Medical Sciences , Arak, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Fatemeh Sahlabadi
- Department of Environmental Health Engineering, School of Health, Social Determinants of Health Research Center, 125609 Birjand University of Medical Sciences , Birjand, Iran
| | - Negin Rezaeiarshad
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Marzieh Torabbeigi
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Samaneh Jalali
- Department of Environmental Health Engineering, School of Public Health and Safety, 556492 Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
2
|
Fakhri Y, Limam I, Kamali M, Zare A, Ranaei V, Mohamadi S, Khaneghah AM. A systematic review of potentially toxic elements (PTEs) in river sediments from China: evaluation of associated non-dietary health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:269. [PMID: 39934524 DOI: 10.1007/s10661-025-13690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
This study aimed to investigate the concentration of potentially toxic elements (PTEs) such as cadmium (Cd), arsenic (As), lead (Pb), mercury (Hg), and nickel (Ni) in river sediments across China. Additionally, it performed a non-dietary risk assessment for the exposed population. We searched international databases, including Web of Science, PubMed, Scopus, and Google Scholar (for gray literature), covering the period from January 1, 2010, to February 30, 2023. Ultimately, we included 136 papers comprising 190 studies or data reports. Our findings revealed that the highest Arsenic concentrations were found in the Mawei River, Xiangjiang River, and Fuyang River sediments. The highest Lead concentrations were detected in the North River sediment, and the Yangtze, Xiangjiang, and North Rivers showed the most significant Cadmium levels. The rank order of PTEs based on the percentage of significant non-carcinogenic risk (toxicity hazard quotient, THQ > 1) in adults was as follows: arsenic (87%) > lead (29%) > cadmium (24%) > mercury (18%) > nickel (4%). In adolescents, the ranking was as follows: arsenic (95%) > lead (84%) > cadmium (62%) > mercury (28%) > nickel (18%). Our findings indicate that the non-carcinogenic risk in most of the studied locations in China is unacceptably high due to arsenic, lead, and cadmium (THQ > 1). Furthermore, the carcinogenic risk of arsenic in the majority of the studied areas (99%) was also deemed unacceptable (cancer risk > 1E-6). As such, the pollution from toxic elements in the sediments of China's rivers requires urgent attention.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment, and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet, Sidi Thabet, Tunisia
- High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Marzieh Kamali
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Zare
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord, Iran.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia
| |
Collapse
|
3
|
Alipour V, Mahmoudi I, Borzoei M, Mehri F, Sarkhosh M, Limam I, Nasiri R, Fakhri Y. Concentration of Potentially Toxic Elements (PTEs) in Rapid Coffee Products in Bandar Abbas, Iran: Probabilistic Non-Carcinogenic and Carcinogenic Risk Assessment. Biol Trace Elem Res 2025; 203:1209-1220. [PMID: 38755494 DOI: 10.1007/s12011-024-04228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Coffee is one of the most widely consumed beverages in the world. However, coffee plants are often exposed to potentially toxic elements (PTEs) pollution. The main aims of current study were to detect the PTEs in instant coffee and health risk assessment of consumers in Bandar Abbas city. To achieve this, 40 samples of instant coffee were randomly collected from various points in the city in 2023 and PTEs concentrations were measured using flame atomic absorption spectrometry (FAAS). The non-carcinogenic and carcinogenic risks were calculated using Monte Carlo simulation (MCS) method. The concentrations of Fe and Cu were higher than other PTEs, equaling 404.41 mg/kg and 0.0046 mg/kg, respectively. The non-carcinogenic risk assessment revealed that THQ (Fe > Pb > As > Cd > Ni > Cu) and TTHQ levels were less than 1 based on the 95% percentile in adults and children, indicating there is no possibility of a non-carcinogenic risk associated with instant coffee. The carcinogenic risk due to inorganic As in instant coffee was acceptable (2.63E-5 and 1.27E-5 based on the 95% percentile for adults and children, respectively), therefore PTEs in instant coffee do not endanger the health of consumers.
Collapse
Affiliation(s)
- Vali Alipour
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iman Mahmoudi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mohammad Borzoei
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rasul Nasiri
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Mahmudiono T, Fakhri Y, Daraei H, Mehri F, Einolghozati M, Mohamadi S, Mousavi Khaneghah A. The concentration of Lithium in water resources: A systematic review, meta-analysis and health risk assessment. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:667-677. [PMID: 37261955 DOI: 10.1515/reveh-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
The presence of trace elements such as lithium (Li) in water resources in the long term can endanger consumers' health. Several studies have been conducted on Li concentration in water sources; hence, this study attempted to retrieve studies using a systematic search. The search was conducted in Web of Sciences, Embase, PubMed, and Scopus databases from 1 January 2010 to 15 January 2023. Li concentration was meta-analyzed based on the type of water resources and countries subgroups in the random effects model (REM) statistical analysis. In addition, health risk assessment in different age groups was calculated using the target hazard quotient (THQ). This study included 76 papers with 157 data reports in our meta-analysis. The overall pooled concentration of Li was 5.374 (95 % CI: 5.261-5.487 μg/L). The pooled concentration of Li in groundwater (40.407 μg/L) was 14.53 times surface water (2.785 μg/L). The highest water Li content was attributed to Mexico (2,209.05 μg/L), Bolivia (1,444.05 μg/L), Iraq (1,350 μg/L), and Argentina (516.39 μg/L). At the same time, the lowest water Li content was associated with Morocco (1.20 μg/L), Spain (0.46 μg/L), and India (0.13 μg/L). THQ due to Li in water resources in consumers of Iraq, Mexico, South Africa, Afghanistan, Bolivia, Portugal, Malawi, South Korea, Nepal, South Korea, Argentina, and the USA was higher than 1 value. Therefore, continuous monitoring of Li concentration in water sources and reducing Li concentration, especially in groundwater water, using new water treatment processes in these countries are recommended.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtab Einolghozati
- Department of Nutrition and food Safety, School of Medicine. Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| |
Collapse
|
5
|
Mahmudiono T, Fakhri Y, Adiban M, Sarafraz M, Mohamadi S. Concentration of potential toxic elements in canned tuna fish: systematic review and health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2619-2637. [PMID: 37820694 DOI: 10.1080/09603123.2023.2264205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The health risks (non-carcinogenic and carcinogenic risk) were calculated in both adults and children, using target hazard quotient (THQ) and carcinogenic risk (CR). The concentrations of Cd, Pb, and Ni were higher than the standard limits but they did not pose any non-carcinogenic health risks in adult and children's consumers (THQ <1). Meanwhile, the risk assessment of iAs indicates THQ > 1 for children in Egypt. Moreover, the THQ value due to Me Hg for adult in Tunisia and for children in Tunisia, Malta, Portugal, Latvia, Cambogia, Peru, South Korea, Romania, Hong Kong, United Arab Emirates, Morocco, and Egypt was higher than 1 value. In addition, the calculated CR values of iAs for the adults and children were within the threshold risk of developing cancer (Between 1.00E-4 to 1.00E-6). Therefore, it is recommended to continuously monitor the concentration of PTEs in canned tuna.
Collapse
Affiliation(s)
- Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
- Center for Health and Nutrition Education, Counselling and Empowerment (CHeNECE), Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Moayed Adiban
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Public Health, Ilam University of Medical Science, Ilam, Iran
| | - Mansour Sarafraz
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sara Mohamadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-kord University, Shahre-kord, Iran
| |
Collapse
|
6
|
Mousavi Khaneghah A, Kamalabadi M, Heshmati A, Hadian Z. The concentration of potentially toxic elements (PTEs) in Iranian rice: a dietary health risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90757-90771. [PMID: 37462870 DOI: 10.1007/s11356-023-28442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
In the present study, six potentially toxic elements (PTEs), including chromium (Cr), arsenic (As), cadmium (Cd), lead (Pb), copper (Cu), and nickel (Ni), were determined in 41 domestic rice samples collected from Tehran using ICP-OES (inductively coupled plasma-optical emission spectrometry). The mean concentration of Cd, As, Cu, Pb, Cr, and Ni was found as 0.014 ± 0.01, 0.018 ± 0.005, 2.15 ± 1.84, 0.42 ± 0.31, 0.1 ± 0.16, and 0.48 ± 0.36 mg kg-1, respectively. Possible risks due to ingestion of PTEs via rice consumption for children and adults were assessed by Monte Carlo simulation. The 50th percentile of estimated Cr intake for children through domestic rice consumption exceeded the maximum tolerable daily intake. There was only a potential non-carcinogenic risk for single Cr exposure for children. The 95th percentile of the estimated hazard index (HI) for children and adults was 4.34 and 1.05, indicating a potential non-carcinogenic risk related to multiple PTE exposure. The lifetime cancer risk (ILCR) values derived from Cr, Ni, As, and Cd exposure exceeded the threshold value, indicating a carcinogenic risk due to PTEs' exposure. The deterministic assessment demonstrates that the Tehran population may be at risk through domestic rice consumption. This study indicates that risk related to the exposure to multiple PTEs through the consumption of rice in adults and children in Tehran is recognized as an important issue, thus supporting the importance of cumulative analysis of the risk of exposure to PTEs through food. Finally, national strategic environmental assessment and technological solutions for monitoring and protecting freshwater, soil, waste management, and chemicals as a global concern policy are needed for public health.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Hadian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|