1
|
Wang DD, Tang GF, Li YY, Yu JJ, Lei XJ, Cao YC, Yao JH. Differences in serum metabolome profile explain individual variation in growth performance of young goats. J Proteomics 2023; 288:104982. [PMID: 37532014 DOI: 10.1016/j.jprot.2023.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
High growth rates and body weight are important traits of young dairy goats that can shorten generation intervals, improve animal performance, and increase economic benefits. In the present study, ninety-nine, 6-month-old, female goats were fed with the same diet and kept under the same management condition. The ten goats with highest average daily gain (ADG, HADG, 135.27 ± 4.59 g/d) and ten goats with lowest ADG (LADG, 87.74 ± 3.13 g/d) were selected to identify the key serum metabolites associated with ADG, and to investigate the relationships of serum metabolome profiles with digestive tract microbiota. The results showed that a total of 125 serum metabolites were significantly different between HADG and LADG. Of these, 43 serum metabolites were significantly higher levels in HADG, including D-ornithine, l-glutamine, L-histidine, carnosine, LysoPC (16:1(9Z)/0:0), DCTP and hydroxylysine, while, 82 serum metabolites were significantly higher levels in LADG, including P-salicylic acid and deoxycholic acid 3-glucuronide. Pathway analysis indicated that these different metabolites were mainly involved in amino acid and lipid metabolism. Furthermore, Spearman's rank correlation analysis revealed that these differential serum metabolites were correlated with ADG and ADG-related bacteria. Notably, serum hydroxylysine and L-histidine could be used as biomarkers for distinguishing HADG and LADG goats, with an accuracy of >92.0%. SIGNIFICANCE: Our study confirms that individual microbiota and metabolic differences contribute to the variations of growth rate in young goats. Some serum metabolites may be useful in improving the growth performance of young goats, which provides directions for developing further nutritional regulation in the goat industry to achieve healthy feeding and efficiency enhancement.
Collapse
Affiliation(s)
- Dang Dang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guang Fu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Yuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Jian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Chun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Vizzari G, Sommariva MC, Dei Cas M, Bertoli S, Vizzuso S, Radaelli G, Battezzati A, Paroni R, Verduci E. Circulating Salicylic Acid and Metabolic Profile after 1-Year Nutritional⁻Behavioral Intervention in Children with Obesity. Nutrients 2019; 11:nu11051091. [PMID: 31100916 PMCID: PMC6566552 DOI: 10.3390/nu11051091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives and Study: Salicylic acid (SA), a phenolic compound produced by plants, may play a beneficial role on health. A pilot study showed that children with obesity had lower serum SA than normal-weight children. The aim of this trial was to evaluate the effect of a 1-year nutritional–behavioral intervention on serum SA levels and to study a possible association between SA levels and metabolic profile changes in children with obesity. Methods: This was an interventional longitudinal observational uncontrolled cohort study. Forty-nine children with obesity, aged >6 years were evaluated. BMI (body mass index) z-scores were calculated. Fasting blood samples were analyzed for lipids, insulin, and glucose. The most significant metabolic variables were calculated. Serum SA was measured using a gas chromatography–mass spectrometry method. The 1-year intervention was based on the promotion of a balanced and normocaloric diet, in accordance with the national guidelines for treatment of childhood obesity. Additionally, behavioral education, based on the revised CALO-RE (Coventry, Aberdeen, and London-REfined) taxonomy, was performed. Results: At the end of intervention, children showed an increase in serum SA levels (mean (Standard Deviation, SD) 0.06 (0.02) vs. 0.09 (0.05) µmol/L; p < 0.001), a reduction of BMI z-score (3.14 (0.79) vs. 3.02 (0.82); p < 0.001), TyG index (4.52 (0.20) vs. 4.48 (0.23); p < 0.001), AIP (atherogenic index of plasma) (0.36 (0.21) vs. 0.27 (0.25); p < 0.001), and triglycerides/HDL (high density lipoprotein) cholesterol (2.57 (1.28) vs. 2.18 (1.22); p < 0.001) ratio. No statistically significant change in HOMA-IR (homeostasis model assessment index) was observed (4.20 (3.29) vs. 4.03 (2.28)). An association between the longitudinal variation of serum SA and HOMA-IR was found (correlation coefficient: −0.338, p = 0.02). Conclusion: Nutritional–behavioral intervention may improve the circulating SA and the metabolic profile in children with obesity. Serum SA could influence mainly glucose metabolism. Further larger studies are needed to evaluate whether a nutritional intervention based on specific advice regarding the quantity and type of fruit and vegetables (FV) consumption could provide benefits in terms of metabolic syndrome.
Collapse
Affiliation(s)
- Giulia Vizzari
- Department of Pediatrics, San Paolo Hospital, Department of Health Science, University of Milan, 20142 Milan, Italy.
| | - Maria Chiara Sommariva
- Department of Pediatrics, San Paolo Hospital, Department of Health Science, University of Milan, 20142 Milan, Italy.
| | - Michele Dei Cas
- Laboratory of Clinical Biochemistry and Mass Spectrometry, San Paolo Hospital, Department of Health Science, Universita' degli Studi di Milano, 20142 Milano, Italy.
| | - Simona Bertoli
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche (DiSTAM), International Center for the Assessment of Nutritional Status (ICANS), Universita' degli Studi di Milano, Via G. Colombo, 60, 20133 Milan, Italy.
| | - Sara Vizzuso
- Department of Pediatrics, San Paolo Hospital, Department of Health Science, University of Milan, 20142 Milan, Italy.
| | - Giovanni Radaelli
- Department of Pediatrics, San Paolo Hospital, Department of Health Science, University of Milan, 20142 Milan, Italy.
| | - Alberto Battezzati
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche (DiSTAM), International Center for the Assessment of Nutritional Status (ICANS), Universita' degli Studi di Milano, Via G. Colombo, 60, 20133 Milan, Italy.
| | - Rita Paroni
- Laboratory of Clinical Biochemistry and Mass Spectrometry, San Paolo Hospital, Department of Health Science, Universita' degli Studi di Milano, 20142 Milano, Italy.
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, Department of Health Science, University of Milan, 20142 Milan, Italy.
| |
Collapse
|
3
|
Integrated analysis of long noncoding RNA and mRNA expression profile in children with obesity by microarray analysis. Sci Rep 2018; 8:8750. [PMID: 29884798 PMCID: PMC5993825 DOI: 10.1038/s41598-018-27113-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/30/2018] [Indexed: 12/29/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have an important role in adipose tissue function and energy metabolism homeostasis, and abnormalities may lead to obesity. To investigate whether lncRNAs are involved in childhood obesity, we investigated the differential expression profile of lncRNAs in obese children compared with non-obese children. A total number of 1268 differentially expressed lncRNAs and 1085 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis revealed that these lncRNAs were involved in varied biological processes, including the inflammatory response, lipid metabolic process, osteoclast differentiation and fatty acid metabolism. In addition, the lncRNA-mRNA co-expression network and the protein-protein interaction (PPI) network were constructed to identify hub regulatory lncRNAs and genes based on the microarray expression profiles. This study for the first time identifies an expression profile of differentially expressed lncRNAs in obese children and indicated hub lncRNA RP11-20G13.3 attenuated adipogenesis of preadipocytes, which is conducive to the search for new diagnostic and therapeutic strategies of childhood obesity.
Collapse
|