1
|
Lázaro Á, Vila-Donat P, Manyes L. Emerging mycotoxins and preventive strategies related to gut microbiota changes: probiotics, prebiotics, and postbiotics - a systematic review. Food Funct 2024; 15:8998-9023. [PMID: 39229841 DOI: 10.1039/d4fo01705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Recent research has focused on the involvement of the gut microbiota in various diseases, where probiotics, prebiotics, synbiotics, and postbiotics (PPSP) exert beneficial effects through modulation of the microbiome. This systematic review aims to provide insight into the interplay among emerging mycotoxins, gut microbiota, and PPSP. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In this review, unregulated yet highly recurrent mycotoxins are classified as emerging mycotoxins. The most frequently observed mycotoxins included those from the Fusarium genus-enniatins (n = 11) and beauvericin (n = 11)-and the Alternaria genus-alternariol monomethyl ether, altertoxin, and tentoxin (n = 10). Among probiotics, the most studied genera were Lactobacillus, Bifidobacterium, and the yeast Saccharomyces cerevisiae. Inulin and cellulose were the most found prebiotics. Data on synbiotics and postbiotics are scarce. Studies have shown that both the gut microbiota and PPSP can detoxify and mitigate the harmful effects of emerging mycotoxins. PPSP not only reduced mycotoxin bioaccessibility, but also counteracted their detrimental effects by activating health-promoting pathways such as short-chain fatty acid production, genoprotection, and reduction of oxidative stress. However, both quantitative and qualitative data remain limited, indicating a need for further in vivo and long-term studies. The formulation of PPSP as functional foods, feeds, or nutraceuticals should be considered a preventive strategy against the toxicity of emerging mycotoxins, for which, there is no established regulatory framework.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Pilar Vila-Donat
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| | - Lara Manyes
- Biotech Agrifood Lab, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, València, Spain.
| |
Collapse
|
2
|
Pierzgalski A, Bryła M, Cramer B, Humpf HU, Twarużek M. Co-occurrence of T-2 and HT-2 Mycotoxins and α and β Anomers of Their Glucosides in Wheat and Oat Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3150-3159. [PMID: 38295269 DOI: 10.1021/acs.jafc.3c07465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this study was to simultaneously determine T-2 and HT-2 toxins and the α and β anomers of their glucosides to assess their content in wheat and oat grains harvested in Poland (2020-2022). Of 298 wheat samples, only 14 (5%) contained the sum of the T-2 and HT-2 toxins (average 34.2 μg/kg; 10.6-67.7 μg/kg). In oat (n = 129), these compounds were detected much more frequently (70% of samples) at an average level of 107.5 μg/kg (6.9-949.1 μg/kg). The sum of T-2 and HT-2 glucosides was detectable in 3% of the wheat (average 16.3 μg/kg; 7.1-39.4 μg/kg) and 65% of the oat samples (average 35.1 μg/kg; 4.0-624.1 μg/kg). Following the study, T-2-3-α-glucoside was identified as the only naturally occurring anomer, while both anomers of HT-2-3-glucosides were detected with higher contents and occurrence rates of HT-2-3-β-glucoside than the α anomer of this compound.
Collapse
Affiliation(s)
- Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, Warsaw 02-532, Poland
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, Münster 48149, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, Münster 48149, Germany
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, Bydgoszcz 85-064, Poland
| |
Collapse
|
3
|
Svoboda T, Labuda R, Sulyok M, Krska R, Bacher M, Berthiller F, Adam G. Fusarium sporotrichioides Produces Two HT-2-α-Glucosides on Rice. Toxins (Basel) 2024; 16:99. [PMID: 38393177 PMCID: PMC10893509 DOI: 10.3390/toxins16020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Fusarium is a genus that mostly consists of plant pathogenic fungi which are able to produce a broad range of toxic secondary metabolites. In this study, we focus on a type A trichothecene-producing isolate (15-39) of Fusarium sporotrichioides from Lower Austria. We assessed the secondary metabolite profile and optimized the toxin production conditions on autoclaved rice and found that in addition to large amounts of T-2 and HT-2 toxins, this strain was able to produce HT-2-glucoside. The optimal conditions for the production of T-2 toxin, HT-2 toxin, and HT-2-glucoside on autoclaved rice were incubation at 12 °C under constant light for four weeks, darkness at 30 °C for two weeks, and constant light for three weeks at 20 °C, respectively. The HT-2-glucoside was purified, and the structure elucidation by NMR revealed a mixture of two alpha-glucosides, presumably HT-2-3-O-alpha-glucoside and HT-2-4-O-alpha-glucoside. The efforts to separate the two compounds by HPLC were unsuccessful. No hydrolysis was observed with two the alpha-glucosidases or with human salivary amylase and Saccharomyces cerevisiae maltase. We propose that the two HT-2-alpha-glucosides are not formed by a glucosyltransferase as they are in plants, but by a trans-glycosylating alpha-glucosidase expressed by the fungus on the starch-containing rice medium.
Collapse
Affiliation(s)
- Thomas Svoboda
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria;
| | - Roman Labuda
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.); (F.B.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.); (F.B.)
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Markus Bacher
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria;
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.); (F.B.)
| | - Gerhard Adam
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria;
| |
Collapse
|
4
|
Daud N, Currie V, Duncan G, Filipe JAN, Yoshinari T, Stoddart G, Roberts D, Gratz SW. Free and Modified Mycotoxins in Organic and Conventional Oats (Avena sativa L.) Grown in Scotland. Toxins (Basel) 2023; 15:toxins15040247. [PMID: 37104186 PMCID: PMC10146303 DOI: 10.3390/toxins15040247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside conjugates have also been reported. Agronomy practices, cereal variety and weather conditions have been suggested to play a role in Fusarium infection in oats. The current study investigates concentrations of free and conjugated Fusarium mycotoxins in organic and conventional oats grown in Scotland. In 2019, 33 milling oat samples (12 organic, 21 conventional) were collected from farmers across Scotland, together with sample questionnaires. Samples were analysed for 12 mycotoxins (type A trichothecenes T-2-toxin, HT-2-toxin, diacetoxyscirpenol; type B trichothecenes deoxynivalenol, nivalenol; zearalenone and their respective glucosides) using LC-MS/MS. The prevalence of type A trichothecenes T-2/HT-2 was very high (100% of conventional oats, 83% of organic oats), whereas type B trichothecenes were less prevalent, and zearalenone was rarely found. T-2-glucoside and deoxynivalenol-glucoside were the most prevalent conjugated mycotoxins (36 and 33%), and co-occurrence between type A and B trichothecenes were frequently observed (66% of samples). Organic oats were contaminated at significantly lower average concentrations than conventional oats, whereas the effect of weather parameters were not statistically significant. Our results clearly indicate that free and conjugated T-2- and HT-2-toxins pose a major risk to Scottish oat production and that organic production and crop rotation offer potential mitigation strategies.
Collapse
Affiliation(s)
- Noshin Daud
- Rowett Institute, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Valerie Currie
- Rowett Institute, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Gary Duncan
- Rowett Institute, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Joao A. N. Filipe
- Biomathematics & Statistics Scotland, Rowett Institute, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Gary Stoddart
- Scottish Organic Producers Association (SOPA), Perth PH2 8BX, UK
| | - Deborah Roberts
- Scottish Organic Producers Association (SOPA), Perth PH2 8BX, UK
| | - Silvia W. Gratz
- Rowett Institute, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
- Correspondence:
| |
Collapse
|
5
|
Yang R, Ye Y, Chen Y, Yang Y, Yang L, Yao Y, Zhong W, Zhu L. First Insight into the Formation of In Vivo Transformation Products of 2-Ethylhexyl diphenyl phosphate in Zebrafish and Prediction of Their Potential Toxicities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:451-462. [PMID: 36515636 DOI: 10.1021/acs.est.2c05506] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a frequently detected organophosphorus flame retardant in the environment, 2-ethylhexyl diphenyl phosphate (EHDPHP) is vulnerable to biotransformation, while the transformation mechanisms and potential toxicities of its transformation products remain unclear. In the present study, in vivo transformation products of EHDPHP in exposed zebrafish for 21d were analyzed by suspect screening and identified by mass spectrometry. Fifteen metabolites were identified, including 10 phase I and 5 phase II products with monohydroxylated products being primary, among which 5-OH-EHDPHP was the most predominant. Two sulfation products and one terminal desaturation metabolite of EHDPHP were reported for the first time. A density functional calculation coupled with molecular docking disclosed that the specific conformation of EHDPHP docked in the protein pockets favored the primary formation of 5-OH-EHDPHP, which was fortified to be a more suitable biomarker of EHDPHP exposure. The in vitro tests suggested that EHDPHP transformation took place not only in liver but also in intestine, where gut microbes played an important role. Due to lack of standards, in silico toxicity prediction combined with molecular docking indicated that several metabolites potentially cause higher toxicities than EHDPHP. The results provide deep insight into the potential health risks due to specific in vivo transformation of EHDPHP.
Collapse
Affiliation(s)
- Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yongxiu Ye
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Ying Chen
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Conjugated type A trichothecenes in oat-based products: Occurrence data and estimation of the related risk. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:toxins14120859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85283756
| |
Collapse
|
8
|
Boško R, Pernica M, Běláková S, Bjelková M, Pluháčková H. Determination of T-2 and HT-2 Toxins in Seed of Milk Thistle [ Silybum marianum (L.) Gaertn.] Using Immunoaffinity Column by UPLC-MS/MS. Toxins (Basel) 2022; 14:258. [PMID: 35448867 PMCID: PMC9028017 DOI: 10.3390/toxins14040258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Milk thistle [Silybum marianum (L.) Gaertn.] achieved a significant increase in interest over the past few years from local and foreign pharmaceutical corporations. The silymarin complex of constituents extracted from milk thistle achenes provides compelling health benefits primarily thanks to antioxidant activities and hepatoprotective effects. However, consuming mycotoxin-contaminated plant material can cause immunosuppression and hepatotoxic problems. The aim of this study was to develop and validate a method for the determination of mycotoxin content in milk thistle. Fusarium toxins as T-2 and HT-2 toxins in grown milk thistle harvested from a breeding station in the Czech Republic during 2020-2021 were studied. The analysis of T-2 and HT-2 toxins was performed by UPLC-MS/MS after immunoaffinity columns EASI-EXTRACT® T-2 & HT-2 clean up. All analysed samples of milk thistle were contaminated with T-2 toxin and HT-2 toxin. The content of T-2 toxin in the samples from 2020 was in the range of 122.7-290.2 µg/kg and HT-2 toxin 157.0-319.0 µg/kg. In 2021, the content of T-2 toxin was in the range of 28.8-69.9 µg/kg and HT-2 toxin was 24.2-75.4 µg/kg. The results show that the climatic conditions of the year of harvesting have a highly statistically significant effect on the content of T-2 and HT-2 toxins in milk thistle.
Collapse
Affiliation(s)
- Rastislav Boško
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic;
- Research Institute of Brewing and Malting, Mostecká 7, CZ-61400 Brno, Czech Republic; (M.P.); (S.B.)
| | - Marek Pernica
- Research Institute of Brewing and Malting, Mostecká 7, CZ-61400 Brno, Czech Republic; (M.P.); (S.B.)
| | - Sylvie Běláková
- Research Institute of Brewing and Malting, Mostecká 7, CZ-61400 Brno, Czech Republic; (M.P.); (S.B.)
| | - Marie Bjelková
- Agritec Plant Research, Zemědělská 2520/16, CZ-78701 Sumperk, Czech Republic;
| | - Helena Pluháčková
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic;
| |
Collapse
|
9
|
Interindividual Differences in In Vitro Human Intestinal Microbial Conversion of 3-Acetyl-DON and 15-Acetyl-DON. Toxins (Basel) 2022; 14:toxins14030199. [PMID: 35324696 PMCID: PMC8953914 DOI: 10.3390/toxins14030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
In order to evaluate the potential differences between 3-Ac-DON and 15-Ac-DON in the human intestinal microbial metabolism, human fecal samples were anaerobically cultured in vitro. Quantitative fecal microbiota characteristics were obtained by 16S rRNA sequencing, and the data revealed several genera that may be relevant for the transformation of the acetylated DONs. Significant differences in the level of 3-Ac-DON and 15-Ac-DON conversion were observed among microbiota from different human individuals. 3-Ac-DON could be rapidly hydrolyzed; a ten-fold difference was observed between the highest and lowest in vitro conversion after 4 h. However, 15-Ac-DON was not fully transformed in the 4 h culture of all the individual samples. In all cases, the conversion rate of 3-Ac-DON was higher than that of 15-Ac-DON, and the conversion rate of 3-Ac-DON into DON varied from 1.3- to 8.4-fold that of 15-Ac-DON. Based on in vitro conversion rates, it was estimated that 45–452 min is required to convert all 3-Ac-DON to DON, implying that deacetylation of 3-Ac-DON is likely to occur completely in all human individuals during intestinal transit. However, for conversion of 15-Ac-DON, DON formation was undetectable at 4 h incubation in 8 out of the 25 human samples, while for 7 of these 8 samples conversion to DON was detected at 24 h incubation. The conversion rates obtained for these seven samples indicated that it would take 1925–4805 min to convert all 15-Ac-DON to DON, while the other 17 samples required 173–734 min. From these results it followed that for eight of the 25 individuals, conversion of 15-Ac-DON to DON was estimated to be incomplete during the 1848 min intestinal transit time. The results thus indicate substantial interindividual as well as compound specific differences in the deconjugation of acetylated DONs. A spearman correlation analysis showed a statistically significant relationship between deconjugation of both acetyl-DONs at 4 h and 24 h incubation. Based on the in vitro kinetic parameters and their scaling to the in vivo situation, it was concluded that for a substantial number of human individuals the deconjugation of 15-Ac-DON may not be complete upon intestinal transit.
Collapse
|
10
|
Jin J, Fall M, Liu Q, Rietjens IMCM, Xing F. Comparative Microbial Conversion of Deoxynivalenol and Acetylated Deoxynivalenol in Different Parts of the Chicken Intestine as Detected In Vitro and Translated to the In Vivo Situation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15384-15392. [PMID: 34854672 DOI: 10.1021/acs.jafc.1c05278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To assess potential differences in the intestinal microbial metabolism of deoxynivalenol (DON) and its acetylated forms 3-Ac-DON and 15-Ac-DON, in vitro anaerobic incubations with intestinal contents from chickens were conducted. Quantitative microbiota characterization was obtained by 16S rRNA sequencing. The data showed substantial differences in the level of different toxin conversions by the microbiota from the different intestinal segments. The transformation rate of DON to its metabolite DOM-1 decreased in the order of cecum > ileum > jejunum, and caecum contents could completely transform DON to DOM-1 within 24 h. However, no transformation appeared in the duodenum. For 3-Ac-DON, the deacetylation rate decreased as follows: duodenum > caecum > ileum > jejunum, and 100% deacetylation was observed in the duodenum within 24 h. The deacetylation of 15-Ac-DON decreased in the order of cecum > duodenum > ileum with no transformation in the jejunum. Some genera may contribute to the transformation of the toxins. Based on the in vitro kinetic parameters and their scaling to the in vivo situation, it was concluded that in the chicken small intestine, the deconjugation of both 3-Ac-DON and 15-Ac-DON will not likely be completed upon full transit. Whether this also holds for humans remains to be established.
Collapse
Affiliation(s)
- Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P. R. China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mouhamed Fall
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P. R. China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Qijun Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P. R. China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of P. R. China, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins (Basel) 2021; 13:768. [PMID: 34822552 PMCID: PMC8619142 DOI: 10.3390/toxins13110768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mycotoxins are one of the most dangerous food and feed contaminants, hence they have significant influence on human and animal health. This study reviews the information reported over the last few years on the toxic effects of the most relevant and studied Fusarium toxins and their modified forms. Deoxynivalenol (DON) and its metabolites can induce intracellular oxidative stress, resulting in DNA damage. Recent studies have also revealed the capability of DON and its metabolites to disturb the cell cycle and alter amino acid expression. Several studies have attempted to explore the mechanism of action of T-2 and HT-2 toxins in anorexia induction. Among other findings, two neurotransmitters associated with this process have been identified, namely substance P and serotonin (5-hydroxytryptamine). For zearalenone (ZEN) and its metabolites, the literature points out that, in addition to their generally acknowledged estrogenic and oxidative potentials, they can also modify DNA by altering methylation patterns and histone acetylation. The ability of the compounds to induce alterations in the expression of major metabolic genes suggests that these compounds can contribute to the development of numerous metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
12
|
Gut microbiota metabolise food-derived mycotoxins. Proc Nutr Soc 2021. [DOI: 10.1017/s0029665121000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Elmassry MM, Zayed A, Farag MA. Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Crit Rev Food Sci Nutr 2020; 62:738-763. [DOI: 10.1080/10408398.2020.1828263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed A. Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
14
|
Daud N, Currie V, Duncan G, Farquharson F, Yoshinari T, Louis P, Gratz SW. Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins. Toxins (Basel) 2020; 12:toxins12100654. [PMID: 33066173 PMCID: PMC7601956 DOI: 10.3390/toxins12100654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Mycotoxins are important food contaminants that commonly co-occur with modified mycotoxins such as mycotoxin-glucosides in contaminated cereal grains. These masked mycotoxins are less toxic, but their breakdown and release of unconjugated mycotoxins has been shown by mixed gut microbiota of humans and animals. The role of different bacteria in hydrolysing mycotoxin-glucosides is unknown, and this study therefore investigated fourteen strains of human gut bacteria for their ability to break down masked mycotoxins. Individual bacterial strains were incubated anaerobically with masked mycotoxins (deoxynivalenol-3-β-glucoside, DON-Glc; nivalenol-3-β-glucoside, NIV-Glc; HT-2-β-glucoside, HT-2-Glc; diacetoxyscirpenol-α-glucoside, DAS-Glc), or unconjugated mycotoxins (DON, NIV, HT-2, T-2, and DAS) for up to 48 h. Bacterial growth, hydrolysis of mycotoxin-glucosides and further metabolism of mycotoxins were assessed. We found no impact of any mycotoxin on bacterial growth. We have demonstrated that Butyrivibrio fibrisolvens, Roseburia intestinalis and Eubacterium rectale hydrolyse DON-Glc, HT-2 Glc, and NIV-Glc efficiently and have confirmed this activity in Bifidobacterium adolescentis and Lactiplantibacillus plantarum (DON-Glc only). Prevotella copri and B. fibrisolvens efficiently de-acetylated T-2 and DAS, but none of the bacteria were capable of de-epoxydation or hydrolysis of α-glucosides. In summary we have identified key bacteria involved in hydrolysing mycotoxin-glucosides and de-acetylating type A trichothecenes in the human gut.
Collapse
Affiliation(s)
- Noshin Daud
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Valerie Currie
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Gary Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Freda Farquharson
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan;
| | - Petra Louis
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Silvia W. Gratz
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
- Correspondence:
| |
Collapse
|
15
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|
16
|
Kasimir M, Behrens M, Schulz M, Kuchenbuch H, Focke C, Humpf HU. Intestinal Metabolism of α- and β-Glucosylated Modified Mycotoxins T-2 and HT-2 Toxin in the Pig Cecum Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5455-5461. [PMID: 32298583 DOI: 10.1021/acs.jafc.0c00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The type A trichothecene mycotoxins T-2 and HT-2 toxin are fungal secondary metabolites produced by Fusarium fungi, which contaminate food and feed worldwide. Especially as a result of the high toxicity of T-2 toxin and their occurrence together with glucosylated forms in cereal crops, these mycotoxins are of human health concern. Particularly, it is unknown whether and how these modified mycotoxins are metabolized in the gastrointestinal tract and, thus, contribute to the overall toxicity. Therefore, the comparative intestinal metabolism of T-2 and HT-2 toxin glucosides in α and β configuration was investigated using the ex vivo pig cecum model, which mimics the human intestinal metabolism. Regardless of its configuration, the C-3 glycosidic bond was hydrolyzed within 10-20 min, releasing T-2 and HT-2 toxin, which were further metabolized to HT-2 toxin and T-2 triol, respectively. We conclude that T-2 and HT-2 toxin should be evaluated together with their modified forms for risk assessment.
Collapse
Affiliation(s)
- Matthias Kasimir
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Mareike Schulz
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Henning Kuchenbuch
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christine Focke
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|