1
|
Kushwah AS, Masood S, Mishra R, Banerjee M. Genetic and epigenetic alterations in DNA repair genes and treatment outcome of chemoradiotherapy in cervical cancer. Crit Rev Oncol Hematol 2024; 194:104240. [PMID: 38122918 DOI: 10.1016/j.critrevonc.2023.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cervical cancer (CaCx) is the deadliest malignancy among women which is caused by human papillomavirus (HPV) and anthro-demographical/clinicopathological factors. HPV oncoproteins E6 and E7 target p53 and RB (retinoblastoma) protein degradation, Ataxia telangiectasia mutated (ATM), ATM-RAD3-related (ATR) inactivation and subsequent impairment of non-homologous end joining (NHEJ), homologous recombination, and base excision repair pathways. There is also an accumulation of genetic and epigenetic alterations in Tumor Growth Suppressors (TGS), oncogenes, and DNA repair genes leading to increased genome instability and CaCx development. These alterations might be responsible for differential clinical response to Cisplatin-based chemoradiotherapy (CRT) in patients. This review explores HPV-mediated DNA damage as a risk factor in CaCx development, the mechanistic role of genetic and epigenetic alterations in DNA repair genes and their association with CRT and outcome, It also explores new possibilities for the development of genetic and epigenetic-based biomarkers for diagnostic, prognostic, and molecular therapeutic interventions.
Collapse
Affiliation(s)
- Atar Singh Kushwah
- Department of Urology and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York 10029, NY, USA; Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Shireen Masood
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
| |
Collapse
|
2
|
Gupta MK, Kushwah AS, Singh R, Srivastava K, Banerjee M. Genetic and epigenetic alterations in MGMT gene and correlation with concomitant chemoradiotherapy (CRT) in cervical cancer. J Cancer Res Clin Oncol 2023; 149:15159-15170. [PMID: 37634205 DOI: 10.1007/s00432-023-05305-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE The MGMT (O6-methylguanine-DNA methyltransferase) gene plays a crucial role in repairing DNA damage caused by alkylating agents, including those used in chemotherapy. Genetic and epigenetic alterations can influence the regulation of MGMT gene, which in turn may impact the response to concomitant chemoradiotherapy (CRT) in cervical cancer. The present study was undertaken to evaluate the correlation of such variations in MGMT gene with the treatment outcome of concomitant chemoradiotherapy (CRT) in cervical cancer. METHODS A total of 460 study subjects (240 controls and 220 patients) were subjected to genotypic analysis of MGMT gene variants rs12917(T/C) and rs2308327(A/G) by Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Out of them, 48 each of controls and patients were analyzed for promoter methylation and expression by methylation-specific PCR and real-time PCR, respectively. Patients (n = 48) were followed up and evaluated for treatment (CRT) outcome. Statistical analyses were done using GraphPad (9.0) and SPSS version 18.0. RESULTS Individuals with GG genotype, G allele of rs2308327, and haplotype 'TA' of both variants showed a significant increase in the development of cervical cancer (P ≤ 0.05). In epigenetic regulation, there was a significant hypermethylation of MGMT gene and down-regulation of their expression in patients compared to control individuals. In treatment outcome of CRT, GG genotype of rs2308327(A/G) gene variant showed better response and GG + AG was significantly associated with vital status (alive). Unmethylated MGMT gene showed better median overall survival up to 25 months significant in comparison to methylated MGMT promoter. CONCLUSION Gene variant rs2308327(A/G) and promoter hypermethylation regulated MGMT gene can be a good prognostic for treatment response in cervical cancer patients.
Collapse
Affiliation(s)
- Maneesh Kumar Gupta
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Atar Singh Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, 226003, India
| | - Kirti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow, 226003, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
3
|
Singh Kushwah A, Srivastava K, Banerjee M. Differential expression of DNA repair genes and treatment outcome of chemoradiotherapy (CRT) in cervical cancer. Gene 2023; 868:147389. [PMID: 36963733 DOI: 10.1016/j.gene.2023.147389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Cervical cancer (CaCx) is the malignancy of uterine cervix which induce by human papillomavirus (HPV) infections. HPV infection starts with the induction of double-stranded breaks by increasing oxidative stress and modulation of DNA repair pathways. Deficiency in DNA repair pathways and accumulation of DNA damage increases mutation rates resulting in genomic instability and cancer development. Patients with HPV-associated CaCx display increased sensitivity to cisplatin-based chemoradiotherapy (CRT) and improved survival rates. However, the cellular mechanisms responsible for this characteristic difference are unclear. Here, we have evaluated expression of DNA repair genes in peripheral blood cells and correlated them with treatment outcomes. A total of 211 study subjects includes in the study comprised 103 CaCx patients and 108 healthy controls. All the study subjects were analyzed for the expression profile of DNA repair genes by using real-time PCR (RT-PCR). The differentially expressed DNA repair gene was correlated with the treatment outcome of CRT. OGG1, XRCC2, XRCC3, XRCC4 and XRCC6 genes were found to be significant (P=0.001) down-regulated as compared to controls. While XRCC5 and RAD51 showed significant up-regulated (P=0.024 and 0.041) in CaCx patients. XRCC6 was associated (P=0.033) with poor vital while up-regulated RAD51 showed slight association (P=0.075) with better vital with an increased 2.96- and 2.33-fold risk in the study population. In the case of overall survival, down-regulated XRCC4 was associated (P=0.042) with poor survival (27 months) with the least hazard ratio (0.56 HR). Down-regulated OGG1 involved BER, XRCC2 and XRCC3 in homologous recombination and XRCC4, XRCC5 and XRCC6 in Non-homologous end-joining repair, which showed a deficiency of DNA repair capacity resulting caused of an accumulation of DNA damage and genome instability. Impaired DNA repair gene expression is responsible for poor prognosis and survival in CaCx. Therefore, these gene expressions can be considered a potential prognostic, diagnostic and therapeutic biomarker for CaCx.
Collapse
Affiliation(s)
- Atar Singh Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, Uttar Pradesh, India; Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Kirti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow-226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, Uttar Pradesh, India.
| |
Collapse
|
4
|
Ding Y, Yi J, Wang J, Sun Z. Interleukin-1 receptor antagonist: a promising cytokine against human squamous cell carcinomas. Heliyon 2023; 9:e14960. [PMID: 37025835 PMCID: PMC10070157 DOI: 10.1016/j.heliyon.2023.e14960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Inflammation, especially chronic inflammation, is closely linked to tumor development. As essential chronic inflammatory cytokines, the interleukin family plays a key role in inflammatory infections and malignancies. The interleukin-1 (IL-1) receptor antagonist (IL1RA), as a naturally occurring receptor antagonist, is the first discovered and can compete with IL-1 in binding to the receptor. Recent studies have revealed the association of the polymorphisms in IL1RA with an increased risk of squamous cell carcinomas (SCCs), including squamous cell carcinoma of the head and neck (SCCHN), cervical squamous cell carcinoma, cutaneous squamous cell carcinoma (cSCC), esophageal squamous cell carcinoma (ESCC), and bronchus squamous cell carcinoma. Here, we reviewed the antitumor potential of IL1RA as an IL-1-targeted inhibitor.
Collapse
Affiliation(s)
- Yujie Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhida Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding author. Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Nahar Z, Jafrin S, Aziz MA, Islam MS. Link of IL-1β rs16944 polymorphism with breast, cervical and ovarian cancer: A systematic review and meta-analysis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Seyedabadi N, Shoushtari SY, Soofi A, Arabpour J, Shams Z, Akhavan H, Hosseini-Asl S. Molecular profiles of predictive biomarkers for platinum-based chemotherapy in Non-Small Cell Lung Cancer (NSCLC). Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Kaushik M, Chandra Joshi R, Kushwah AS, Gupta MK, Banerjee M, Burget R, Dutta MK. Cytokine gene variants and socio-demographic characteristics as predictors of cervical cancer: A machine learning approach. Comput Biol Med 2021; 134:104559. [PMID: 34147008 DOI: 10.1016/j.compbiomed.2021.104559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
Cervical cancer is still one of the most prevalent cancers in women and a significant cause of mortality. Cytokine gene variants and socio-demographic characteristics have been reported as biomarkers for determining the cervical cancer risk in the Indian population. This study was designed to apply a machine learning-based model using these risk factors for better prognosis and prediction of cervical cancer. This study includes the dataset of cytokine gene variants, clinical and socio-demographic characteristics of normal healthy control subjects, and cervical cancer cases. Different risk factors, including demographic details and cytokine gene variants, were analysed using different machine learning approaches. Various statistical parameters were used for evaluating the proposed method. After multi-step data processing and random splitting of the dataset, machine learning methods were applied and evaluated with 5-fold cross-validation and also tested on the unseen data records of a collected dataset for proper evaluation and analysis. The proposed approaches were verified after analysing various performance metrics. The logistic regression technique achieved the highest average accuracy of 82.25% and the highest average F1-score of 82.58% among all the methods. Ridge classifiers and the Gaussian Naïve Bayes classifier achieved the highest sensitivity-85%. The ridge classifier surpasses most of the machine learning classifiers with 84.78% accuracy and 97.83% sensitivity. The risk factors analysed in this study can be taken as biomarkers in developing a cervical cancer diagnosis system. The outcomes demonstrate that the machine learning assisted analysis of cytokine gene variants and socio-demographic characteristics can be utilised effectively for predicting the risk of developing cervical cancer.
Collapse
Affiliation(s)
- Manoj Kaushik
- Centre for Advanced Studies, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Rakesh Chandra Joshi
- Centre for Advanced Studies, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Atar Singh Kushwah
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India; Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Maneesh Kumar Gupta
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Radim Burget
- Brno University of Technology, Faculty of Electrical Engineering, Brno, Czech Republic
| | - Malay Kishore Dutta
- Centre for Advanced Studies, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
8
|
Brown NW, Orchard G, Rhodes A. British Journal of Biomedical Science in 2020. What have we learned? Br J Biomed Sci 2020; 77:159-167. [PMID: 33252323 DOI: 10.1080/09674845.2020.1827578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Each year the British Journal of Biomedical Science publishes a 'What have we learned' editorial designed to introduce readers within the major disciplines of laboratory medicine to developments outside their immediate area. In addition it is designed to inform a wider readership of the advances in the diagnosis and treatment of disease. To this end, in 2020 the journal published 39 articles covering the disciplines within Biomedical Science in the 4 issues comprising volume 77. These included a review of COVID-19 in this issue, 27 original articles, 6 Biomedical Science 'In Brief' and 4 case histories. 27 of the articles involved molecular techniques, with one of these comparing results with a mass spectrometry based method. The preponderance of molecular genetic studies gives us a good idea of the likely future direction of the disciplines.
Collapse
Affiliation(s)
- N W Brown
- Toxicology, Wansbeck General Hospital, Ashington, UK
| | - G Orchard
- St John's Dermatopathology, St Thomas' Hospital, London, UK
| | - A Rhodes
- International Medical University , Bukit Jalil, School of Health Sciences, Kuala Lumpur, Malaysia
| |
Collapse
|