1
|
Kashirina A, Gavrina A, Kryukov E, Elagin V, Kolesova Y, Artyuhov A, Momotyuk E, Abdyyev V, Meshcheryakova N, Zagaynova E, Dashinimaev E, Kashina A. Energy Metabolism and Intracellular pH Alteration in Neural Spheroids Carrying Down Syndrome. Biomedicines 2021; 9:1741. [PMID: 34829971 PMCID: PMC8615730 DOI: 10.3390/biomedicines9111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Brain diseases including Down syndrome (DS/TS21) are known to be characterized by changes in cellular metabolism. To adequately assess such metabolic changes during pathological processes and to test drugs, methods are needed that allow monitoring of these changes in real time with minimally invasive effects. Thus, the aim of our work was to study the metabolic status and intracellular pH of spheroids carrying DS using fluorescence microscopy and FLIM. For metabolic analysis we measured the fluorescence intensities, fluorescence lifetimes and the contributions of the free and bound forms of NAD(P)H. For intracellular pH assay we measured the fluorescence intensities of SypHer-2 and BCECF. Data were processed with SPCImage and Fiji-ImageJ. We demonstrated the predominance of glycolysis in TS21 spheroids compared with normal karyotype (NK) spheroids. Assessment of the intracellular pH indicated a more alkaline intracellular pH in the TS21 spheroids compared to NK spheroids. Using fluorescence imaging, we performed a comprehensive comparative analysis of the metabolism and intracellular pH of TS21 spheroids and showed that fluorescence microscopy and FLIM make it possible to study living cells in 3D models in real time with minimally invasive effects.
Collapse
Affiliation(s)
- Alena Kashirina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Emil Kryukov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| | - Yuliya Kolesova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Ekaterina Momotyuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Vepa Abdyyev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
| | - Natalia Meshcheryakova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 603022 Nizhny Novgorod, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (V.A.); (E.D.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, 117997 Moscow, Russia; (A.A.); (E.M.); (N.M.)
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Aleksandra Kashina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (A.G.); (E.K.); (V.E.); (E.Z.); (A.K.)
| |
Collapse
|
2
|
Rossano AJ, Chouhan AK, Macleod GT. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo. J Physiol 2013; 591:1691-706. [PMID: 23401611 PMCID: PMC3624846 DOI: 10.1113/jphysiol.2012.248377] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/04/2013] [Indexed: 01/27/2023] Open
Abstract
All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pH(cyto)) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pH(cyto) shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pH(cyto). Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤ 4 s) trains of action potentials but did buffer slow (~60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca(2+) increase upon stimulation, and partial inhibition of the plasma membrane Ca(2+)-ATPase, a Ca(2+)/H(+) exchanger, attenuated pH(cyto) shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (~0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pH(cyto) shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pH(cyto) shifts cannot be dismissed as artifacts of ex vivo preparations.
Collapse
Affiliation(s)
- Adam J Rossano
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
3
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
4
|
Zhang Z, Nguyen KT, Barrett EF, David G. Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis. Neuron 2011; 68:1097-108. [PMID: 21172612 DOI: 10.1016/j.neuron.2010.11.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2010] [Indexed: 01/29/2023]
Abstract
Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (∼ 13 nM average peak increase in [H(+)]), followed by a prolonged alkalinization (∼ 30 nM peak decrease in [H(+)]) that outlasts the stimulation train. The alkalinization is selectively eliminated by blocking vesicular exocytosis with botulinum neurotoxins, and is prolonged by the endocytosis-inhibitor dynasore. Blocking H(+) pumping by vesicular H(+)-ATPase (with folimycin or bafilomycin) suppresses stimulation-induced alkalinization and reduces endocytotic uptake of FM1-43. These results suggest that H(+)-ATPase, known to transfer cytosolic H(+) into prefused vesicles, continues to extrude cytosolic H(+) after being exocytotically incorporated into the plasma membrane. The resulting cytosolic alkalinization may facilitate vesicular endocytosis.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
5
|
Abstract
The regulation of pH is a vital homeostatic function shared by all tissues. Mechanisms that govern H+ in the intracellular and extracellular fluid are especially important in the brain, because electrical activity can elicit rapid pH changes in both compartments. These acid-base transients may in turn influence neural activity by affecting a variety of ion channels. The mechanisms responsible for the regulation of intracellular pH in brain are similar to those of other tissues and are comprised principally of forms of Na+/H+ exchange, Na+-driven Cl-/HCO3- exchange, Na+-HCO3- cotransport, and passive Cl-/HCO3- exchange. Differences in the expression or efficacy of these mechanisms have been noted among the functionally and morphologically diverse neurons and glial cells that have been studied. Molecular identification of transporter isoforms has revealed heterogeneity among brain regions and cell types. Neural activity gives rise to an assortment of extracellular and intracellular pH shifts that originate from a variety of mechanisms. Intracellular pH shifts in neurons and glia have been linked to Ca2+ transport, activation of acid extrusion systems, and the accumulation of metabolic products. Extracellular pH shifts can occur within milliseconds of neural activity, arise from an assortment of mechanisms, and are governed by the activity of extracellular carbonic anhydrase. The functional significance of these compartmental, activity-dependent pH shifts is discussed.
Collapse
Affiliation(s)
- Mitchell Chesler
- Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
Ozkan P, Mutharasan R. A rapid method for measuring intracellular pH using BCECF-AM. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1572:143-8. [PMID: 12204343 DOI: 10.1016/s0304-4165(02)00303-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.
Collapse
Affiliation(s)
- Pinar Ozkan
- Molecular Biology and Genetics Department, Golden Horn University, Istanbul, Turkey
| | | |
Collapse
|