1
|
Huang Y, Zhang L, Sun Y, Liu Q, Chen J, Qian X, Gao X, Zhu GJ, Wan G. A human-specific cytotoxic neopeptide generated by the deafness gene Cingulin. J Genet Genomics 2024:S1673-8527(24)00195-4. [PMID: 39098598 DOI: 10.1016/j.jgg.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death. Expression of the mutant CGN in the inner ear results in severe hair cell death and hearing loss in mice, resembling the auditory phenotype in human patients. Interestingly, a human-specific residue (V1112) in the neopeptide generated by the frameshift mutation is critical for the aggregation and cytotoxicity of the mutant human CGN. Moreover, the expression of heat shock factor 1 (HSF1) decreases the accumulation of insoluble mutant CGN aggregates and rescues cell death. In summary, these findings identify mutant-specific toxic polypeptides as a disease-causing mechanism of the deafness mutation in CGN, which can be targeted by the expression of the cell chaperone response regulator HSF1.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Yuecen Sun
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China
| | - Jie Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China
| | - Xiaoyun Qian
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China
| | - Xia Gao
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China.
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China.
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China.
| |
Collapse
|
2
|
Su Y, Long Y, Xie K. Cingulin family: Structure, function and clinical significance. Life Sci 2024; 341:122504. [PMID: 38354973 DOI: 10.1016/j.lfs.2024.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/21/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Cingulin and its paralog paracingulin are vital components of the apical junctional complex in vertebrate epithelial and endothelial cells. They are both found in tight junctions (TJ), and paracingulin is also detectable in adherens junctions (AJ) as TJ cytoplasmic plaque proteins. Cingulin and paracingulin interact with other proteins to perform functions. They interact with cytoskeletal proteins, modulate the activity of small GTPases, such as RhoA and Rac1, and regulate gene expression. In addition, cingulin and paracingulin regulate barrier function and many pathological processes, including inflammation and tumorigenesis. In this review, we summarize the discovery and structure, expression and subcellular distribution, and molecular interactions of cingulin family proteins and discuss their role in development, physiology, and pathological processes.
Collapse
Affiliation(s)
- Yuling Su
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - You Long
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong 510006, China; The South China University of Technology Comprehensive Cancer Center, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
3
|
Maupérin M, Sassi A, Méan I, Feraille E, Citi S. Knock Out of CGN and CGNL1 in MDCK Cells Affects Claudin-2 but Has a Minor Impact on Tight Junction Barrier Function. Cells 2023; 12:2004. [PMID: 37566083 PMCID: PMC10417749 DOI: 10.3390/cells12152004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Cingulin (CGN) and paracingulin (CGNL1) are cytoplasmic proteins of tight junctions (TJs), where they play a role in tethering ZO-1 to the actomyosin and microtubule cytoskeletons. The role of CGN and CGNL1 in the barrier function of epithelia is not completely understood. Here, we analyzed the effect of the knock out (KO) of either CGN or CGNL1 or both on the paracellular permeability of monolayers of kidney epithelial (MDCK) cells. KO cells displayed a modest but significant increase in the transepithelial resistance (TER) of monolayers both in the steady state and during junction assembly by the calcium switch, whereas the permeability of the monolayers to 3 kDa dextran was not affected. The permeability to sodium was slightly but significantly decreased in KO cells. This phenotype correlated with slightly increased mRNA levels of claudin-2, slightly decreased protein levels of claudin-2, and reduced junctional accumulation of claudin-2, which was rescued by CGN or CGNL1 but not by ZO-1 overexpression. These results confirm previous observations indicating that CGN and CGNL1 are dispensable for the barrier function of epithelia and suggest that the increase in the TER in clonal lines of MDCK cells KO for CGN, CGNL1, or both is due to reduced protein expression and junctional accumulation of the sodium pore-forming claudin, claudin-2.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Ali Sassi
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Eric Feraille
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
4
|
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2021; 10:1996830. [PMID: 34719339 PMCID: PMC9359365 DOI: 10.1080/21688370.2021.1996830] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.
Collapse
Affiliation(s)
- Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Akbari
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
6
|
Abstract
Tight junctions (TJ) play a central role in the homeostasis of epithelial and endothelial tissues, by providing a semipermeable barrier to ions and solutes, by contributing to the maintenance of cell polarity, and by functioning as signaling platforms. TJ are associated with the actomyosin and microtubule cytoskeletons, and the crosstalk with the cytoskeleton is fundamental for junction biogenesis and physiology. TJ are spatially and functionally connected to adherens junctions (AJ), which are essential for the maintenance of tissue integrity. Mechano-sensing and mechano-transduction properties of several AJ proteins have been characterized during the last decade. However, little is known about how mechanical forces act on TJ and their proteins, how TJ control the mechanical properties of cells and tissues, and what are the underlying molecular mechanisms. Here I review recent studies that have advanced our understanding of the relationships between mechanical force and TJ biology.
Collapse
|
7
|
Zhang L, Feng T, Spicer LJ. The role of tight junction proteins in ovarian follicular development and ovarian cancer. Reproduction 2018; 155:R183-R198. [PMID: 29374086 DOI: 10.1530/rep-17-0503] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/26/2018] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) are protein structures that control the transport of water, ions and macromolecules across cell layers. Functions of the transmembrane TJ protein, occluding (OCLN) and the cytoplasmic TJ proteins, tight junction protein 1 (TJP1; also known as zona occludens protein-1), cingulin (CGN) and claudins (CLDN) are reviewed, and current evidence of their role in the ovarian function is reviewed. Abundance of OCLN, CLDNs and TJP1 mRNA changed during follicular growth. In vitro treatment with various growth factors known to affect ovarian folliculogenesis indicated that CGN, OCLN and TJP1 are hormonally regulated. The summarized studies indicate that expression of TJ proteins (i.e., OCLN, CLDN, TJP1 and CGN) changes with follicle size in a variety of vertebrate species but whether these changes in TJ proteins are increased or decreased depends on species and cell type. Evidence indicates that autocrine, paracrine and endocrine regulators, such as fibroblast growth factor-9, epidermal growth factor, androgens, tumor necrosis factor-α and glucocorticoids may modulate these TJ proteins. Additional evidence presented indicates that TJ proteins may be involved in ovarian cancer development in addition to normal follicular and luteal development. A model is proposed suggesting that hormonal downregulation of TJ proteins during ovarian follicular development could reduce barrier function (i.e., selective permeability of molecules between theca and granulosa cells) and allow for an increase in the volume of follicular fluid as well as allow additional serum factors into the follicle that may directly impact granulosa cell functions.
Collapse
Affiliation(s)
- Lingna Zhang
- Department of Animal ScienceOklahoma State University, Stillwater, Oklahoma, USA
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary MedicineBeijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Leon J Spicer
- Department of Animal ScienceOklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Khan TA, Fariduddin Q, Yusuf M. Low-temperature stress: is phytohormones application a remedy? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21574-21590. [PMID: 28831664 DOI: 10.1007/s11356-017-9948-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 08/11/2017] [Indexed: 05/11/2023]
Abstract
Among the various abiotic stresses, low temperature is one of the major environmental constraints that limit the plant development and crop productivity. Plants are able to adapt to low-temperature stress through the changes in membrane composition and activation of reactive oxygen scavenging systems. The genetic pathway induced due to temperature downshift is based on C-repeat-binding factors (CBF) which activate promoters through the C-repeat (CRT) cis-element. Calcium entry is a major signalling event occurring immediately after a downshift in temperature. The increase in the level of cytosolic calcium activates many enzymes, such as phospholipases and calcium dependent-protein kinases. MAP-kinase module has been shown to be involved in the cold response. Ultimately, the activation of these signalling pathways leads to changes in the transcriptome. Several phytohormones, such as abscisic acid, brassinosteroids, auxin, salicylic acid, gibberellic acid, cytokinins and jasmonic acid, have been shown to play key roles in regulating the plant development under low-temperature stress. These phytohormones modulate important events involved in tolerance to low-temperature stress in plants. Better understanding of these events and genes controlling these could open new strategies for improving tolerance mediated by phytohormones.
Collapse
Affiliation(s)
- Tanveer Alam Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohammad Yusuf
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
9
|
Vasileva E, Sluysmans S, Bochaton-Piallat ML, Citi S. Cell-specific diversity in the expression and organization of cytoplasmic plaque proteins of apical junctions. Ann N Y Acad Sci 2017; 1405:160-176. [PMID: 28617990 DOI: 10.1111/nyas.13391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/11/2023]
Abstract
Tight and adherens junctions play critical roles in the barrier, adhesion, and signaling functions of epithelial and endothelial cells. How the molecular organization of these junctions is tuned to the widely diverse physiological requirements of each tissue type is not well understood. Here, we address this question by examining the expression, localization, and interactions of major cytoplasmic plaque proteins of tight and adherens junctions in different cultured epithelial and endothelial cell lines. Immunoblotting and immunofluorescence analyses show that the expression profiles of cingulin, paracingulin, ZO-1, ZO-2, ZO-3, PLEKHA7, afadin, PDZD11, p120-catenin, and α-catenin, as well as the transmembrane junctional proteins occludin, E-cadherin, and VE-cadherin, are significantly diverse when comparing kidney cells (MDCK, mCCD), keratinocytes (HaCaT), lung carcinoma (A427, A549), and endothelium-derived cells (bEnd.3, meEC, H5V). Proximity ligation and co-immunoprecipitation assays show that PLEKHA7 and PDZD11 are significantly more associated with the tight junction proteins cingulin and ZO-1 in aortic endothelium-derived (meEC) cells but not kidney collecting duct epithelial (mCCD) cells. These results provide evidence that the cytoplasmic plaques of tight and adherens junctions are diverse in their composition and molecular architecture and establish a conceptual framework by which we can rationally address the mechanisms of tissue-dependent junction physiology and signaling by cytoplasmic junctional proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | | | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
10
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Tian Y, Gawlak G, Tian X, Shah AS, Sarich N, Citi S, Birukova AA. Role of Cingulin in Agonist-induced Vascular Endothelial Permeability. J Biol Chem 2016; 291:23681-23692. [PMID: 27590342 DOI: 10.1074/jbc.m116.720763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/13/2023] Open
Abstract
Agonist-induced activation of Rho GTPase signaling leads to endothelial cell (EC) permeability and may culminate in pulmonary edema, a devastating complication of acute lung injury. Cingulin is an adaptor protein first discovered in epithelium and is involved in the organization of the tight junctions. This study investigated the role of cingulin in control of agonist-induced lung EC permeability via interaction with RhoA-specific activator GEF-H1. The siRNA-induced cingulin knockdown augmented thrombin-induced EC permeability monitored by measurements of transendothelial electrical resistance and endothelial cell permeability for macromolecules. Increased thrombin-induced permeability in ECs with depleted cingulin was associated with increased activation of GEF-H1 and RhoA detected in pulldown activation assays. Increased GEF-H1 association with cingulin was essential for down-regulation of thrombin-induced RhoA barrier disruptive signaling. Using cingulin-truncated mutants, we determined that GEF-H1 interaction with the rod + tail domain of cingulin was required for inactivation of GEF-H1 and endothelial cell barrier preservation. The results demonstrate the role for association of GEF-H1 with cingulin as the mechanism of RhoA pathway inactivation and rescue of EC barrier after agonist challenge.
Collapse
Affiliation(s)
- Yufeng Tian
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Grzegorz Gawlak
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Xinyong Tian
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Alok S Shah
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Nicolene Sarich
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Sandra Citi
- the Department of Cell Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Anna A Birukova
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
12
|
Mangan AJ, Sietsema DV, Li D, Moore JK, Citi S, Prekeris R. Cingulin and actin mediate midbody-dependent apical lumen formation during polarization of epithelial cells. Nat Commun 2016; 7:12426. [PMID: 27484926 PMCID: PMC4976216 DOI: 10.1038/ncomms12426] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/01/2016] [Indexed: 12/26/2022] Open
Abstract
Coordinated polarization of epithelial cells is a key step during morphogenesis that leads to the formation of an apical lumen. Rab11 and its interacting protein FIP5 are necessary for the targeting of apical endosomes to the midbody and apical membrane initiation site (AMIS) during lumenogenesis. However, the machinery that mediates AMIS establishment and FIP5-endosome targeting remains unknown. Here we identify a FIP5-interacting protein, Cingulin, which localizes to the AMIS and functions as a tether mediating FIP5-endosome targeting. We analysed the machinery mediating AMIS recruitment to the midbody and determined that both branched actin and microtubules are required for establishing the site of the nascent lumen. We demonstrate that the Rac1-WAVE/Scar complex mediates Cingulin recruitment to the AMIS by inducing branched actin formation, and that Cingulin directly binds to microtubule C-terminal tails through electrostatic interactions. We propose a new mechanism for apical endosome targeting and AMIS formation around the midbody during epithelial lumenogenesis. Polarisation of epithelial cells causes lumen formation, which is mediated by apical membrane initiation site (AMIS) and FIP5, but how this is regulated is unclear. Here, the authors identify cingulin as a FIP-5 interacting protein, recruiting the Rac1-WAVE/Scar complex to the AMIS and branched actin formation.
Collapse
Affiliation(s)
- Anthony J Mangan
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Daniel V Sietsema
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Dongying Li
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Sandra Citi
- Cell Biology Department, University of Geneva, CH-1211 GENEVA 4, Switzerland
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA
| |
Collapse
|
13
|
Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, Poser I, Mann M, Hyman AA, Citi S. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem 2016; 291:11016-29. [PMID: 27044745 DOI: 10.1074/jbc.m115.712935] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Indexed: 01/07/2023] Open
Abstract
PLEKHA7 is a junctional protein implicated in stabilization of the cadherin protein complex, hypertension, cardiac contractility, glaucoma, microRNA processing, and susceptibility to bacterial toxins. To gain insight into the molecular basis for the functions of PLEKHA7, we looked for new PLEKHA7 interactors. Here, we report the identification of PDZ domain-containing protein 11 (PDZD11) as a new interactor of PLEKHA7 by yeast two-hybrid screening and by mass spectrometry analysis of PLEKHA7 immunoprecipitates. We show that PDZD11 (17 kDa) is expressed in epithelial and endothelial cells, where it forms a complex with PLEKHA7, as determined by co-immunoprecipitation analysis. The N-terminal Trp-Trp (WW) domain of PLEKHA7 interacts directly with the N-terminal 44 amino acids of PDZD11, as shown by GST-pulldown assays. Immunofluorescence analysis shows that PDZD11 is localized at adherens junctions in a PLEKHA7-dependent manner, because its junctional localization is abolished by knock-out of PLEKHA7, and is rescued by re-expression of exogenous PLEKHA7. The junctional recruitment of nectin-1 and nectin-3 and their protein levels are decreased via proteasome-mediated degradation in epithelial cells where either PDZD11 or PLEKHA7 have been knocked-out. PDZD11 forms a complex with nectin-1 and nectin-3, and its PDZ domain interacts directly with the PDZ-binding motif of nectin-1. PDZD11 is required for the efficient assembly of apical junctions of epithelial cells at early time points in the calcium-switch model. These results show that the PLEKHA7-PDZD11 complex stabilizes nectins to promote efficient early junction assembly and uncover a new molecular mechanism through which PLEKHA7 recruits PDZ-binding membrane proteins to epithelial adherens junctions.
Collapse
Affiliation(s)
- Diego Guerrera
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Jimit Shah
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ekaterina Vasileva
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Sophie Sluysmans
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Isabelle Méan
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Lionel Jond
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ina Poser
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Matthias Mann
- the Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Anthony A Hyman
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Sandra Citi
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland,
| |
Collapse
|
14
|
Schossleitner K, Rauscher S, Gröger M, Friedl HP, Finsterwalder R, Habertheuer A, Sibilia M, Brostjan C, Födinger D, Citi S, Petzelbauer P. Evidence That Cingulin Regulates Endothelial Barrier Function In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2016; 36:647-54. [PMID: 26821949 DOI: 10.1161/atvbaha.115.307032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/14/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Cingulin is a cytoplasmic component of tight junctions. Although modulation of cingulin levels in cultured epithelial model systems has no significant effect on barrier function, evidence from cingulin knockout mice suggests that cingulin may be involved in the regulation of the behavior of epithelial or endothelial cells. Here, we investigate the role of cingulin in the barrier function of endothelial cells. APPROACH AND RESULTS We show that cingulin is expressed in human endothelial cells of the skin, brain, and lung in vivo and in vitro. Endothelial cingulin colocalizes and coimmunoprecipitates with the tight junction proteins zonula occludens-1 and guanine nucleotide exchange factor-H1. Cingulin overexpression in human umbilical vein endothelial cell induces tight junction formation, increases transendothelial electric resistance, and strengthens barrier function for low and high molecular weight tracers. In contrast, cultured endothelial cells lacking cingulin are more permeable for low molecular weight tracers. In cingulin knockout mice, neurons of the area postrema and Purkinje cells show an increased uptake of small molecular weight tracers indicating decreased barrier function at these sites. CONCLUSIONS We demonstrate that cingulin participates in the modulation of endothelial barrier function both in human cultured cells in vitro and in mouse brains in vivo. Understanding the role of cingulin in maintaining tight barriers in endothelia may allow developing new strategies for the treatment of vascular leak syndromes.
Collapse
Affiliation(s)
- Klaudia Schossleitner
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Sabine Rauscher
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Marion Gröger
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Heinz Peter Friedl
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Richard Finsterwalder
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Andreas Habertheuer
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Maria Sibilia
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Christine Brostjan
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Dagmar Födinger
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Sandra Citi
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.)
| | - Peter Petzelbauer
- From the Skin and Endothelium Research Division (SERD), Department of Dermatology (K.S., S.R., M.G., H.P.F., R.F., P.P.), Core Facility Imaging (S.R., M.G.), Department of Cardiac Surgery (A.H.), Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center (M.S.), Department of Surgery (C.B.), and Department of Dermatology (D.F.), Medical University of Vienna, Vienna, Austria; and Department of Cell Biology and Institute of Genetics and Genomics in Geneva, University of Geneva, Switzerland (S.C.).
| |
Collapse
|
15
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
16
|
Spadaro D, Tapia R, Jond L, Sudol M, Fanning AS, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem 2014; 289:22500-11. [PMID: 24986862 DOI: 10.1074/jbc.m114.556449] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The localization and activities of DbpA/ZONAB and YAP transcription factors are in part regulated by the density-dependent assembly of epithelial junctions. DbpA activity and cell proliferation are inhibited by exogenous overexpression of the tight junction (TJ) protein ZO-1, leading to a model whereby ZO-1 acts by sequestering DbpA at the TJ. However, mammary epithelial cells and mouse tissues knock-out for ZO-1 do not show increased proliferation, as predicted by this model. To address this discrepancy, we examined the localization and activity of DbpA and YAP in Madin-Darby canine kidney cells depleted either of ZO-1, or one of the related proteins ZO-2 and ZO-3 (ZO proteins), or all three together. Depletion of only one ZO protein had no effect on DbpA localization and activity, whereas depletion of ZO-1 and ZO-2, which is associated with reduced ZO-3 expression, resulted in increased DbpA localization in the cytoplasm. Only depletion of ZO-2 reduced the nuclear import of YAP. Mammary epithelial (Eph4) cells KO for ZO-1 showed junctional DbpA, demonstrating that ZO-1 is not required to sequester DbpA at junctions. However, further depletion of ZO-2 in Eph4 ZO-1KO cells, which do not express ZO-3, caused decreased junctional localization and expression of DbpA, which were rescued by the proteasome inhibitor MG132. In vitro binding assays showed that full-length ZO-1 does not interact with DbpA. These results show that ZO-2 is implicated in regulating the nuclear shuttling of YAP, whereas ZO proteins redundantly control the junctional retention and stability of DbpA, without affecting its shuttling to the nucleus.
Collapse
Affiliation(s)
- Domenica Spadaro
- From the Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Rocio Tapia
- From the Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Lionel Jond
- From the Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Marius Sudol
- the Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, the Department of Medicine/Nephrology, Mount Sinai Medical School, New York, New York 10029, and
| | - Alan S Fanning
- the Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sandra Citi
- From the Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland,
| |
Collapse
|
17
|
Guillemot L, Guerrera D, Spadaro D, Tapia R, Jond L, Citi S. MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. Mol Biol Cell 2014; 25:1995-2005. [PMID: 24807907 PMCID: PMC4072573 DOI: 10.1091/mbc.e13-11-0680] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Rac1 inhibitor MgcRacGAP regulates Rac1 activation and TJ barrier development during junction assembly in epithelial cells. CGN and CGNL1 recruit MgcRacGAP to the TJ and interact with MgcRacGAP. The regulation of Rho-family GTPases is crucial to direct the formation of cell–cell junctions and tissue barriers. Cingulin (CGN) and paracingulin (CGNL1) control RhoA activation in epithelial cells by interacting with RhoA guanidine exchange factors. CGNL1 depletion also inhibits Rac1 activation during junction assembly. Here we show that, unexpectedly, Madin–Darby canine kidney epithelial cells depleted of both CGN and CGNL1 (double-KD cells) display normal Rac1 activation and tight junction (TJ) formation, despite decreased junctional recruitment of the Rac1 activator Tiam1. The expression of the Rac1 inhibitor MgcRacGAP is decreased in double-KD cells, and the barrier development and Rac1 activation phenotypes are rescued by exogenous expression of MgcRacGAP. MgcRacGAP colocalizes with CGN and CGNL1 at TJs and forms a complex and interacts directly in vitro with CGN and CGNL1. Depletion of either CGN or CGNL1 in epithelial cells results in decreased junctional localization of MgcRacGAP but not of ECT2, a centralspindlin-interacting Rho GEF. These results provide new insight into coordination of Rho-family GTPase activities at junctions, since apical accumulation of CGN and CGNL1 at TJs during junction maturation provides a mechanism to spatially restrict down-regulation of Rac1 activation through the recruitment of MgcRacGAP.
Collapse
Affiliation(s)
- Laurent Guillemot
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Diego Guerrera
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Domenica Spadaro
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Rocio Tapia
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, SwitzerlandDepartment of Cell Biology, University of Geneva, CH-1211 Geneva, SwitzerlandInstitute of Genetics and Genomics in Geneva, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
18
|
Paschoud S, Jond L, Guerrera D, Citi S. PLEKHA7 modulates epithelial tight junction barrier function. Tissue Barriers 2014; 2:e28755. [PMID: 24843844 PMCID: PMC4022608 DOI: 10.4161/tisb.28755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022] Open
Abstract
PLEKHA7 is a recently identified protein of the epithelial zonula adhaerens (ZA), and is part of a protein complex that stabilizes the ZA, by linking it to microtubules. Since the ZA is important in the assembly and disassembly of tight junctions (TJ), we asked whether PLEKHA7 is involved in modulating epithelial TJ barrier function. We generated clonal MDCK cell lines in which one of four different constructs of PLEKHA7 was inducibly expressed. All constructs were localized at junctions, but constructs lacking the C-terminal region were also distributed diffusely in the cytoplasm. Inducible expression of PLEKHA7 constructs did not affect the expression and localization of TJ proteins, the steady-state value of transepithelial resistance (TER), the development of TER during the calcium switch, and the flux of large molecules across confluent monolayers. In contrast, expression of three out of four constructs resulted both in enhanced recruitment of E-cadherin and associated proteins at the apical ZA and at lateral puncta adherentia (PA), a decreased TER at 18 h after assembly at normal calcium, and an attenuation in the fall in TER after extracellular calcium removal. This latter effect was inhibited when cells were treated with nocodazole. Immunoprecipitation analysis showed that PLEKHA7 forms a complex with the cytoplasmic TJ proteins ZO-1 and cingulin, and this association does not depend on the integrity of microtubules. These results suggest that PLEKHA7 modulates the dynamics of assembly and disassembly of the TJ barrier, through E-cadherin protein complex- and microtubule-dependent mechanisms.
Collapse
Affiliation(s)
- Serge Paschoud
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Lionel Jond
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Diego Guerrera
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| | - Sandra Citi
- Departments of Cell Biology and Molecular Biology; University of Geneva; Geneva ; Switzerland Institute of Genetics and Genomics of Geneva; University of Geneva; Geneva, Switzerland
| |
Collapse
|
19
|
Guillemot L, Spadaro D, Citi S. The junctional proteins cingulin and paracingulin modulate the expression of tight junction protein genes through GATA-4. PLoS One 2013; 8:e55873. [PMID: 23409073 PMCID: PMC3567034 DOI: 10.1371/journal.pone.0055873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/03/2013] [Indexed: 02/07/2023] Open
Abstract
The cytoplamic junctional proteins cingulin and paracingulin have been implicated in the regulation of gene expression in different cultured cell models. In renal epithelial MDCK cells, depletion of either protein results in a Rho-dependent increase in the expression of claudin-2. Here we examined MDCK cell clones depleted of both cingulin and paracingulin (double-KD cells), and we found that unexpectedly the expression of claudin-2, and also the expression of ZO-3 and claudin-3, were decreased, while RhoA activity was still higher than in control cells. The decreased expression of claudin-2 and other TJ proteins in double–KD cells correlated with reduced levels of the transcription factor GATA-4, and was rescued by overexpression of GATA-4, but not by inhibiting RhoA activity. These results indicate that in MDCK cells GATA-4 is required for the expression of claudin-2 and other TJ proteins, and that maintenance of GATA-4 expression requires either cingulin or paracingulin. These results and previous studies suggest a model whereby cingulin and paracingulin redundantly control the expression of specific TJ proteins through distinct GATA-4- and RhoA-dependent mechanisms, and that in the absence of sufficient levels of GATA-4 the RhoA-mediated upregulation of claudin-2 is inhibited.
Collapse
Affiliation(s)
- Laurent Guillemot
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Citi S, Pulimeno P, Paschoud S. Cingulin, paracingulin, and PLEKHA7: signaling and cytoskeletal adaptors at the apical junctional complex. Ann N Y Acad Sci 2012; 1257:125-32. [PMID: 22671598 DOI: 10.1111/j.1749-6632.2012.06506.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cingulin, paracingulin, and PLEKHA7 are proteins localized in the cytoplasmic region of the apical junctional complex of vertebrate epithelial cells. Cingulin has been detected at tight junctions (TJs), whereas paracingulin has been detected at both TJs and adherens junctions (AJs) and PLEKHA7 has been detected at AJs. One function of cingulin and paracingulin is to regulate the activity of Rho family GTPases at junctions through their direct interaction with guanidine exchange factors of RhoA and Rac1. Cingulin also contributes to the regulation of transcription of several genes in different types of cultured cells, in part through its ability to modulate RhoA activity. PLEKHA7, together with paracingulin, is part of a protein complex that links E-cadherin to the microtubule cytoskeleton at AJs. In this paper, we review the current knowledge about these proteins, including their discovery, the characterization of their expression, localization, structure, molecular interactions, and their roles in different developmental and disease model systems.
Collapse
Affiliation(s)
- Sandra Citi
- Department of Molecular Biology, University of Geneva, Switzerland.
| | | | | |
Collapse
|
21
|
Guillemot L, Schneider Y, Brun P, Castagliuolo I, Pizzuti D, Martines D, Jond L, Bongiovanni M, Citi S. Cingulin is dispensable for epithelial barrier function and tight junction structure, and plays a role in the control of claudin-2 expression and response to duodenal mucosa injury. J Cell Sci 2012; 125:5005-14. [PMID: 22946046 DOI: 10.1242/jcs.101261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cingulin (CGN) is a 140 kDa protein, which is localized to the cytoplasmic region of vertebrate tight junctions (TJ), and regulates gene expression and RhoA signaling in cultured cells. To investigate the function of CGN at the organism level, we generated CGN knockout (CGN(-/-)) mice by homologous recombination. CGN(-/-) mice are viable and fertile, and are born at the expected mendelian ratios. Immunohistochemistry, immunofluorescence, electron microscopy and permeability assays of epithelial tissues of CGN(-/-) mice show no cingulin labeling at junctions, a normal localization of TJ proteins, and normal TJ structure and barrier function. Microarray analysis of intestinal cells does not show significant changes in gene expression between CGN(-/-) and CGN(+/+) mice, whereas immunoblotting analysis shows a twofold increase in the levels of claudin-2 protein in the duodenum and the kidney of CGN(-/-) mice, compared to CGN(+/+) littermates. Furthermore, CGN(-/-) mice show an exacerbated response to the ulcerogenic action of cysteamine, whereas acute injury of the colon by dextran sodium sulfate elicits undistinguishable responses in CGN(-/-) and CGN(+/+) mice. We conclude that at the organism level cingulin is dispensable for the structure and barrier function of TJ, and is embedded in signaling networks that control the expression of claudin-2, and the mucosal response to acute injury in the duodenum.
Collapse
Affiliation(s)
- Laurent Guillemot
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther 2012; 18:609-15. [PMID: 22686334 DOI: 10.1111/j.1755-5949.2012.00340.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Blood-brain barrier (BBB) is a dynamic interference that regulates the nutrition and toxic substance in and out of the central nervous system (CNS), and plays a crucial role in maintaining a stable circumstance of the CNS. Tight junctions among adjacent cells form the basic structure of BBB to limiting paracellular permeability. In the present review, the constituents of tight junction proteins are depicted in detail, together with the regulation of tight junction under stimulation and in pathological conditions. Tight junction modulators are also discussed.
Collapse
Affiliation(s)
- Wei-Ye Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
23
|
Paschoud S, Guillemot L, Citi S. Distinct domains of paracingulin are involved in its targeting to the actin cytoskeleton and regulation of apical junction assembly. J Biol Chem 2012; 287:13159-69. [PMID: 22315225 DOI: 10.1074/jbc.m111.315622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Paracingulin is an M(r) 150-160 kDa cytoplasmic protein of vertebrate epithelial tight and adherens junctions and comprises globular head, coiled-coil rod, and globular tail domains. Unlike its homologous tight junction protein cingulin, paracingulin has been implicated in the control of junction assembly and has been localized at extrajunctional sites in association with actin filaments. Here we analyze the role of paracingulin domains, and specific regions within the head and rod domains, in the function and localization of paracingulin by inducible overexpression of exogenous proteins in epithelial Madin Darby canine kidney (MDCK) cells and by expression of mutated and chimeric constructs in Rat1 fibroblasts and MDCK cells. The overexpression of the rod + tail domains of paracingulin perturbs the development of the tight junction barrier and Rac1 activation during junction assembly by the calcium switch, indicating that regulation of junction assembly by paracingulin is mediated by these domains. Conversely, only constructs containing the head domain target to junctions in MDCK cells and Rat1 fibroblasts. Furthermore, expression of chimeric cingulin and paracingulin constructs in Rat1 fibroblasts and MDCK cells identifies specific sequences within the head and rod domains of paracingulin as critical for targeting to actin filaments and regulation of junction assembly, respectively. In summary, we characterize the functionally important domains of paracingulin that distinguish it from cingulin.
Collapse
Affiliation(s)
- Serge Paschoud
- Department of Molecular Biology, University of Geneva, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | | | | |
Collapse
|
24
|
Martin-Martin N, Dan Q, Amoozadeh Y, Waheed F, McMorrow T, Ryan MP, Szászi K. RhoA and Rho kinase mediate cyclosporine A and sirolimus-induced barrier tightening in renal proximal tubular cells. Int J Biochem Cell Biol 2011; 44:178-88. [PMID: 22062948 DOI: 10.1016/j.biocel.2011.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/29/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
Abstract
The regulation and maintenance of the paracellular transport in renal tubular epithelia is vital for kidney functions. Combination of the immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) exerts powerful immunosuppression, but also causes nephrotoxicity. We have previously shown that CsA and SRL elevate transepithelial resistance (TER) in kidney tubular cells partly through MEK/ERK1/2. In this work we examined the hypothesis that the RhoA pathway may also be mediating effects of CsA and SRL. We show that CsA and the CsA/SRL combination activated RhoA, induced cofilin phosphorylation and promoted stress fiber generation. The Rho kinase (ROK) inhibitor, Y27632, prevented CsA and CsA/SRL-induced cofilin phosphorylation and actin remodelling, reduced the TER increase and prevented the rise in claudin-7 levels caused by the drugs. Expression of the exchange factor GEF-H1/lfc was elevated in cells treated with CsA and CsA/SRL. GEF-H1 silencing inhibited RhoA activation by ≈50%, and potently reduced cofilin phosphorylation and stress fiber formation induced by CsA and CsA/SRL. However, GEF-H1 downregulation did not prevent the TER change. Thus the Rho/Rho kinase pathway was involved in mediating CsA and CsA/SRL-induced cytoskeleton rearrangement and TER changes via claudin-7 expression. Our data however point to differential regulation of Rho activation involved in central cytoskeleton remodelling, that is GEF-H1-dependent and junctional permeability that does not require GEF-H1.
Collapse
Affiliation(s)
- Natalia Martin-Martin
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhengbin Z, Ping X, Hongbo S, Mengjun L, Zhenyan F, Liye C. Advances and prospects: biotechnologically improving crop water use efficiency. Crit Rev Biotechnol 2011; 31:281-93. [PMID: 21486183 DOI: 10.3109/07388551.2010.531004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bio-water saving can be defined as the reduction of crop water consumption employing biological measures. This is the focus of efforts to save water in agriculture. Different levels of water-use efficiency (WUE) have been developed. The genetic diversity of WUE has been confirmed in several crops. WUE is the basis of bio-watering and physiological WUE is the key. The degree to develop physiological WUE potential decides the performance of bio-watering in the field. During this process, fine management is important. Thus bio-watering is closely related to WUE. Crop WUE has improved and evolved as a result of breeding programs. Many WUE genes have been located in different genomic and aneuploid materials and have been mapped by various molecular markers in a number of crops. Two genes, (Erecta and alx8), which control water use efficiency; have been cloned in Arabidopsis thaliana. Eleven WUE genes have been identified by microarray analysis. Six genes associated with drought resistance and photosynthesis have been transfered into crops which have resulted in improving WUE and drought resistance. WUE is important on the basis of functional identification of more drought resistant gene resources. The popularity on the industrial-scale of transgenic plants is still in its infancy and one of the reasons for this is the lack of knowledge regarding molecular mechanisms and it is a very immature technology. Enhanced agricultural practices and the theoretical aspects of improving crop WUE have been developed and are discussed in this review paper. Rapid progress will be made in bio-water savings and that crop WUE can be substantially improved under both favorable and unfavorable water-limited environments. This will be achieved by a combination of traditional breeding techniques and the introduction of modern biotechnology.
Collapse
Affiliation(s)
- Zhang Zhengbin
- Key Laboratory of Agricultural Water Resources, Center of Agriculture Resources Research, Institute of Genetics and Developmental Biology, China Academy of Sciences (CAS), Shjiazhuang.
| | | | | | | | | | | |
Collapse
|
26
|
Boudry G, Morise A, Seve B, LE Huërou-Luron I. Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates. Pediatr Res 2011; 69:4-9. [PMID: 20856168 DOI: 10.1203/pdr.0b013e3181fc9d13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our study aimed at investigating the impact of the level of protein in milk formula on intestinal structure, barrier function, and its nervous regulation in normal and LBW neonates using a porcine model. Normal birth weight (NBW) or LBW piglets were fed from d7 to d28 of age either with a high protein (HP) or with an adequate protein (AP) formula or stayed with their mother [mother fed (MF)]. The proximal jejunum and distal ileum were sampled at d28 for morphometry analysis and ex vivo permeability measurement in Ussing chambers. Formula feeding induced a trophic effect on the jejunum and ileum of both NBW and LBW piglets, which exhibited longer villi than MF animals, irrespective of the type of formula. In NBW piglets, intestinal permeability was not altered by formula feeding. On the contrary, LBW piglets fed with HP formula, but not AP, exhibited a greater ileal permeability than MF piglets. Feeding the HP formula also disturbed jejunal and ileal regulation of permeability by acetylcholine and vasoactive intestinal peptide (VIP) in LBW compared with MF LBW piglets. In conclusion, the level of protein in formulas did not modify intestinal structure and function in NBW individuals but dramatically modified intestinal barrier function physiology in LBW individuals.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Unité Mixte de Recherche 1079, Institut National de la Recherche Agronomique, Saint-Gilles F-35590, France.
| | | | | | | |
Collapse
|
27
|
Paschoud S, Yu D, Pulimeno P, Jond L, Turner JR, Citi S. Cingulin and paracingulin show similar dynamic behaviour, but are recruited independently to junctions. Mol Membr Biol 2010; 28:123-35. [PMID: 21166484 DOI: 10.3109/09687688.2010.538937] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cingulin (CGN) and paracingulin (CGNL1) are structurally related proteins that regulate Rho family GTPases by recruiting guanine nucleotide exchange factors to epithelial junctions. Although the subcellular localization of cingulin and paracingulin is likely to be essential for their role as adaptor proteins, nothing is known on their in vivo localization, and their dynamics of exchange with the junctional membrane. To address these questions, we generated stable clones of MDCK cells expressing fluorescently tagged cingulin and paracingulin. By FRAP analysis, cingulin and paracingulin show a very similar dynamic behaviour, with recovery curves and mobile fractions that are distinct from ZO-1, and indicate a rapid exchange with a cytosolic pool. Interestingly, only paracingulin, but not cingulin, is peripherally localized in isolated cells, requires the integrity of the microtubule cytoskeleton to be stably anchored to junctions, and associates with E-cadherin. In contrast, both proteins require the integrity of the actin cytoskeleton to maintain their junctional localization. Although cingulin and paracingulin form a complex and can interact in vitro, the junctional recruitment and the dynamics of membrane exchange of paracingulin is independent of cingulin, and vice-versa. In summary, cingulin and paracingulin show a similar dynamic behaviour, but partially distinct localizations and functional interactions with the cytoskeleton, and are recruited independently to junctions.
Collapse
Affiliation(s)
- Serge Paschoud
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 2010; 30:23-30. [PMID: 19821782 DOI: 10.3109/07388550903208057] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal-contaminated soils.
Collapse
Affiliation(s)
- Shao Hong-Bo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Northwest A&F University, Yangling, China.
| | | | | | | | | | | |
Collapse
|
29
|
Tight junctions: a barrier to the initiation and progression of breast cancer? J Biomed Biotechnol 2009; 2010:460607. [PMID: 19920867 PMCID: PMC2777242 DOI: 10.1155/2010/460607] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/27/2009] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression.
Collapse
|
30
|
Citi S, Paschoud S, Pulimeno P, Timolati F, De Robertis F, Jond L, Guillemot L. The tight junction protein cingulin regulates gene expression and RhoA signaling. Ann N Y Acad Sci 2009; 1165:88-98. [PMID: 19538293 DOI: 10.1111/j.1749-6632.2009.04053.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tight junctions (TJ) regulate the passage of solutes across epithelial sheets, contribute to the establishment and maintenance of epithelial apico-basal polarity and are involved in the regulation of gene expression and cell proliferation. Cingulin, a Mr 140 kDa protein localized in the cytoplasmic region of TJ, is not directly required for TJ formation and epithelial polarity but regulates RhoA signaling, through its interaction with the RhoA activator GEF-H1, and gene expression. Here we describe in more detail the effect of cingulin mutation in embryoid bodies (EB) on gene expression, by identifying the genes that show the highest degree of up- or downregulation, and the putative canonical pathways that might be affected by cingulin. Furthermore, we show that full-length canine GEF-H1, produced in baculovirus-infected insect cells, interacts with regions both in the cingulin globular head, and in the coiled-coil rod domain. These results extend our previous studies and provide new perspectives for the mechanistic analysis of cingulin function.
Collapse
Affiliation(s)
- Sandra Citi
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Guillemot L, Paschoud S, Jond L, Foglia A, Citi S. Paracingulin regulates the activity of Rac1 and RhoA GTPases by recruiting Tiam1 and GEF-H1 to epithelial junctions. Mol Biol Cell 2008; 19:4442-53. [PMID: 18653465 DOI: 10.1091/mbc.e08-06-0558] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Small GTPases control key cellular events, including formation of cell-cell junctions and gene expression, and are regulated by activating and inhibiting factors. Here, we characterize the junctional protein paracingulin as a novel regulator of the activity of two small GTPases, Rac1 and RhoA, through the functional interaction with their respective activators, Tiam1 and GEF-H1. In confluent epithelial monolayers, paracingulin depletion leads to increased RhoA activity and increased expression of mRNA for the tight junction protein claudin-2. During tight junction assembly by the calcium-switch, Rac1 shows two transient peaks of activity, at earlier (10-20 min) and later (3-8 h) time points. Paracingulin depletion reduces such peaks of Rac1 activation in a Tiam1-dependent manner, resulting in a delay in junction formation. Paracingulin physically interacts with GEF-H1 and Tiam1 in vivo and in vitro, and it is required for their efficient recruitment to junctions, based on immunofluorescence and biochemical experiments. Our results provide the first description of a junctional protein that interacts with GEFs for both Rac1 and RhoA, and identify a novel molecular mechanism whereby Rac1 is activated during junction formation.
Collapse
Affiliation(s)
- Laurent Guillemot
- Department of Molecular Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S. The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:601-13. [PMID: 18339298 DOI: 10.1016/j.bbamem.2007.09.032] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 01/19/2023]
Abstract
The region of cytoplasm underlying the tight junction (TJ) contains several multimolecular protein complexes, which are involved in scaffolding of membrane proteins, regulation of cytoskeletal organization, establishment of polarity, and signalling to and from the nucleus. In this review, we summarize some of the most recent advances in understanding the identity of these proteins, their domain organization, their protein interactions, and their functions in vertebrate organisms. Analysis of knockdown and knockout model systems shows that several TJ proteins are essential for the formation of epithelial tissues and early embryonic development, whereas others appear to have redundant functions.
Collapse
|