1
|
Balakrishnan M, Kenworthy AK. Lipid Peroxidation Drives Liquid-Liquid Phase Separation and Disrupts Raft Protein Partitioning in Biological Membranes. J Am Chem Soc 2024; 146:1374-1387. [PMID: 38171000 PMCID: PMC10797634 DOI: 10.1021/jacs.3c10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
The peroxidation of membrane lipids by free radicals contributes to aging, numerous diseases, and ferroptosis, an iron-dependent form of cell death. Peroxidation changes the structure and physicochemical properties of lipids, leading to bilayer thinning, altered fluidity, and increased permeability of membranes in model systems. Whether and how lipid peroxidation impacts the lateral organization of proteins and lipids in biological membranes, however, remains poorly understood. Here, we employ cell-derived giant plasma membrane vesicles (GPMVs) as a model to investigate the impact of lipid peroxidation on ordered membrane domains, often termed membrane rafts. We show that lipid peroxidation induced by the Fenton reaction dramatically enhances the phase separation propensity of GPMVs into coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains and increases the relative abundance of the disordered phase. Peroxidation also leads to preferential accumulation of peroxidized lipids and 4-hydroxynonenal (4-HNE) adducts in the disordered phase, decreased lipid packing in both Lo and Ld domains, and translocation of multiple classes of raft proteins out of ordered domains. These findings indicate that the peroxidation of plasma membrane lipids disturbs many aspects of membrane rafts, including their stability, abundance, packing, and protein and lipid composition. We propose that these disruptions contribute to the pathological consequences of lipid peroxidation during aging and disease and thus serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Muthuraj Balakrishnan
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Anne K. Kenworthy
- Center
for Membrane and Cell Physiology, University
of Virginia, Charlottesville, Virginia 22903, United States
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| |
Collapse
|
2
|
Parker HA, Forrester L, Kaldor CD, Dickerhof N, Hampton MB. Antimicrobial Activity of Neutrophils Against Mycobacteria. Front Immunol 2021; 12:782495. [PMID: 35003097 PMCID: PMC8732375 DOI: 10.3389/fimmu.2021.782495] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The mycobacterium genus contains a broad range of species, including the human pathogens M. tuberculosis and M. leprae. These bacteria are best known for their residence inside host cells. Neutrophils are frequently observed at sites of mycobacterial infection, but their role in clearance is not well understood. In this review, we discuss how neutrophils attempt to control mycobacterial infections, either through the ingestion of bacteria into intracellular phagosomes, or the release of neutrophil extracellular traps (NETs). Despite their powerful antimicrobial activity, including the production of reactive oxidants such as hypochlorous acid, neutrophils appear ineffective in killing pathogenic mycobacteria. We explore mycobacterial resistance mechanisms, and how thwarting neutrophil action exacerbates disease pathology. A better understanding of how mycobacteria protect themselves from neutrophils will aid the development of novel strategies that facilitate bacterial clearance and limit host tissue damage.
Collapse
Affiliation(s)
| | | | | | | | - Mark B. Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
3
|
Sphingolipids and physical function in the Atherosclerosis Risk in Communities (ARIC) study. Sci Rep 2021; 11:1169. [PMID: 33441925 PMCID: PMC7806657 DOI: 10.1038/s41598-020-80929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 11/09/2022] Open
Abstract
Long-chain sphingomyelins (SMs) may play an important role in the stability of myelin sheath underlying physical function. The objective of this study was to examine the cross-sectional and longitudinal associations of long-chain SMs [SM (41:1), SM (41:2), SM (43:1)] and ceramides [Cer (41:1) and Cer (43:1)] with physical function in the Atherosclerosis Risk in Communities (ARIC) study. Plasma concentrations of SM (41:1), SM (41:2), SM (43:1), Cer (41:1) and Cer (43:1) were measured in 389 ARIC participants in 2011-13. Physical function was assessed by grip strength, Short Physical Performance Battery (SPPB), 4-m walking speed at both 2011-13 and 2016-17, and the modified Rosow-Breslau questionnaire in 2016-2017. Multivariable linear and logistic regression analyses were performed, controlling for demographic and clinical confounders. In cross-sectional analyses, plasma concentrations of SM 41:1 were positively associated with SPPB score (β-coefficients [95% confidence internal]: 0.33 [0.02, 0.63] per 1 standard deviation [SD] increase in log-transformed concentration, p value 0.04), 4-m walking speed (0.042 m/s [0.01, 0.07], p value 0.003), and negatively with self-reported disability (odds ratio = 0.73 [0.65, 0.82], p value < 0.0001). Plasma concentrations of the five metabolites examined were not significantly associated with longitudinal changes in physical function or incidence of poor mobility. In older adults, plasma concentrations of long-chain SM 41:1 were cross-sectionally positively associated with physical function.
Collapse
|
4
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
5
|
Yurtsever D, Lorent JH. Structural Modifications Controlling Membrane Raft Partitioning and Curvature in Human and Viral Proteins. J Phys Chem B 2020; 124:7574-7585. [PMID: 32813532 PMCID: PMC7476027 DOI: 10.1021/acs.jpcb.0c03435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Membrane
proteins and lipids have the capacity to associate into
lateral domains in cell membranes through mutual or collective interactions.
Lipid rafts are functional lateral domains that are formed through
collective interactions of certain lipids and which can include or
exclude proteins. These domains have been implicated in cell signaling
and protein trafficking and seem to be of importance for virus–host
interactions. We therefore want to investigate if raft and viral membrane
proteins present similar structural features, and how these features
are distributed throughout viruses. For this purpose, we performed
a bioinformatics analysis of raft and viral membrane proteins from
available online databases and compared them to nonraft proteins.
In general, transmembrane proteins of rafts and viruses had higher
proportions of palmitoyl and phosphoryl residues compared to nonraft
proteins. They differed in terms of transmembrane domain length and
thickness, with viral proteins being generally shorter and having
a smaller accessible surface area per residue. Nontransmembrane raft
proteins had increased amounts of palmitoyl, prenyl, and phosphoryl
moieties while their viral counterparts were largely myristoylated
and phosphorylated. Several of these structural determinants such
as phosphorylation are new to the raft field and are extensively discussed
in terms of raft functionality and phase separation. Surprisingly,
the proportion of palmitoylated viral transmembrane proteins was inversely
correlated to the virus size which indicated the implication of palmitoylation
in virus membrane curvature and possibly budding. The current results
provide new insights into the raft–virus interplay and unveil
possible targets for antiviral compounds.
Collapse
Affiliation(s)
- Deniz Yurtsever
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, NL-3584CH Utrecht, The Netherlands
| | - Joseph Helmuth Lorent
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, NL-3584CH Utrecht, The Netherlands
| |
Collapse
|
6
|
Radyukhin VA, Baratova LA. Molecular Mechanisms of Raft Organization in Biological Membranes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Pinigin KV, Kondrashov OV, Jiménez-Munguía I, Alexandrova VV, Batishchev OV, Galimzyanov TR, Akimov SA. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci Rep 2020; 10:4087. [PMID: 32139760 PMCID: PMC7058020 DOI: 10.1038/s41598-020-61110-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Liquid-ordered lipid domains represent a lateral inhomogeneity in cellular membranes. These domains have elastic and physicochemical properties different from those of the surrounding membrane. In particular, their thickness exceeds that of the disordered membrane. Thus, elastic deformations arise at the domain boundary in order to compensate for the thickness mismatch. In equilibrium, the deformations lead to an incomplete register of monolayer ordered domains: the elastic energy is minimal if domains in opposing monolayers lie on the top of each other, and their boundaries are laterally shifted by about 3 nm. This configuration introduces a region, composed of one ordered and one disordered monolayers, with an intermediate bilayer thickness. Besides, a jump in a local monolayer curvature takes place in this intermediate region, concentrating here most of the elastic stress. This region can participate in a lateral sorting of membrane inclusions by offering them an optimal bilayer thickness and local curvature conditions. In the present study, we consider the sorting of deformable lipid inclusions, undeformable peripheral and deeply incorporated peptide inclusions, and undeformable transmembrane inclusions of different molecular geometry. With rare exceptions, all types of inclusions have an affinity to the ordered domain boundary as compared to the bulk phases. The optimal lateral distribution of inclusions allows relaxing the elastic stress at the boundary of domains.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS", 4 Leninskiy prospect, Moscow, 119049, Russia
| | | | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.
| |
Collapse
|
8
|
Ortega-Anaya J, Jiménez-Flores R. Symposium review: The relevance of bovine milk phospholipids in human nutrition—Evidence of the effect on infant gut and brain development. J Dairy Sci 2019; 102:2738-2748. [DOI: 10.3168/jds.2018-15342] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022]
|
9
|
Affiliation(s)
- Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Guyomarc’h F, Chen M, Et-Thakafy O, Zou S, Lopez C. Gel-gel phase separation within milk sphingomyelin domains revealed at the nanoscale using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:949-958. [DOI: 10.1016/j.bbamem.2017.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
|
11
|
Sedger LM, Tull DL, McConville MJ, De Souza DP, Rupasinghe TWT, Williams SJ, Dayalan S, Lanzer D, Mackie H, Lam TC, Boyages J. Lipidomic Profiling of Adipose Tissue Reveals an Inflammatory Signature in Cancer-Related and Primary Lymphedema. PLoS One 2016; 11:e0154650. [PMID: 27182733 PMCID: PMC4868287 DOI: 10.1371/journal.pone.0154650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer-related and primary lymphedema (LE) are associated with the production of adipose tissue (AT). Nothing is known, however, about the lipid-based molecules that comprise LE AT. We therefore analyzed lipid molecules in lipoaspirates and serum obtained from LE patients, and compared them to lipoaspirates from cosmetic surgery patients and healthy control cohort serum. LE patient serum analysis demonstrated that triglycerides, HDL- and LDL-cholesterol and lipid transport molecules remained within the normal range, with no alterations in individual fatty acids. The lipidomic analysis also identified 275 lipid-based molecules, including triacylglycerides, diacylglycerides, fatty acids and phospholipids in AT oil and fat. Although the majority of lipid molecules were present in a similar abundance in LE and non-LE samples, there were several small changes: increased C20:5-containing triacylglycerides, reduced C10:0 caprinic and C24:1 nervonic acids. LE AT oil also contained a signature of increased cyclopropane-type fatty acids and inflammatory mediators arachidonic acid and ceramides. Interestingly C20:5 and C22:6 omega-3-type lipids are increased in LE AT, correlating with LE years. Hence, LE AT has a normal lipid profile containing a signature of inflammation and omega-3-lipids. It remains unclear, however, whether these differences reflect a small-scale global metabolic disturbance or effects within localised inflammatory foci.
Collapse
Affiliation(s)
- Lisa M. Sedger
- Department of Clinical Medicine, Faculty of Medicine & Health Science, Macquarie University, Sydney, NSW, Australia
- * E-mail:
| | - Dedreia L. Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Malcolm J. McConville
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Spencer J. Williams
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Lanzer
- Daniel Lanzer Clinic, Malvern, Melbourne, VIC, Australia
| | - Helen Mackie
- Macquarie University Hospital, North Ryde, Sydney, NSW, Australia
| | - Thomas C. Lam
- Macquarie University Hospital, North Ryde, Sydney, NSW, Australia
| | - John Boyages
- Department of Clinical Medicine, Faculty of Medicine & Health Science, Macquarie University, Sydney, NSW, Australia
- Macquarie University Hospital, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
12
|
Gronnier J, Germain V, Gouguet P, Cacas JL, Mongrand S. GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth. PLANT SIGNALING & BEHAVIOR 2016; 11:e1152438. [PMID: 27074617 PMCID: PMC4883921 DOI: 10.1080/15592324.2016.1152438] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 05/22/2023]
Abstract
What are the most abundant sphingolipids on earth? The answer is Glycosyl Inositol Phosphoryl Ceramides (GIPCs) present in fungi and the green lineage. In this review, we discuss the putative role of plant GIPCs in the lipid bilayer asymmetry, in the lateral organization of membrane rafts and in the very long chain fatty acid inter-leaflet coupling of lipids in the plant plasma membrane (PM). A special focus on the structural similarities -and putative functions- of GIPCs is discussed by comparison with animal gangliosides, structural homologs of plant GIPCs.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| | - Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
- Université de Bourgogne, Dijon Cedex, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS-University of Bordeaux, Villenave d'Ornon Cedex, France
| |
Collapse
|
13
|
Gadella BM, Boerke A. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization. Theriogenology 2015; 85:113-24. [PMID: 26320574 DOI: 10.1016/j.theriogenology.2015.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 11/17/2022]
Abstract
The fusion of a sperm with an oocyte to form new life is a highly regulated event. The activation-also termed capacitation-of the sperm cell is one of the key preparative steps required for this process. Ejaculated sperm has to make a journey through the female uterus and oviduct before it can approach the oocyte. The oocyte at that moment also has become prepared to facilitate monospermic fertilization and block immediately thereafter the chance for polyspermic fertilization. Interestingly, ejaculated sperm is not properly capacitated and consequently is not yet able to fertilize the oocyte. During the capacitation process, the formation of competent lipid-protein domains on the sperm head enables sperm-cumulus and zona pellucida interactions. This sperm binding allows the onset for a cascade reaction ultimately resulting in oocyte-sperm fusion. Many different lipids and proteins from the sperm surface are involved in this process. Sperm surface processing already starts when sperm are liberated from the seminiferous tubules and is followed by epididymal maturation where the sperm cell surface is modified and loaded with proteins to ensure it is prepared for its fertilization task. Although cauda epididymal sperm can fertilize the oocyte IVF, they are coated with so-called decapacitation factors during ejaculation. The seminal plasma-induced stabilization of the sperm surface permits the sperm transit through the cervix and uterus but prevents sperm capacitation and thus inhibits fertilization. For IVF purposes, sperm are washed out of seminal plasma and activated to get rid of decapacitation factors. Only after capacitation, the sperm can fertilize the oocyte. In recent years, IVF has become a widely used tool to achieve successful fertilization in both the veterinary field and human medicine. Although IVF procedures are very successful, scientific knowledge is still far from complete when identifying all the molecular players and processes during the first stages the fusion of two gametes into a new life. A concise overview in the current understanding of the process of capacitation and the sperm surface changes is provided. The gaps in knowledge of these prefertilization processes are critically discussed.
Collapse
Affiliation(s)
- B M Gadella
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | - A Boerke
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands; Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
14
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Lorent JH, Levental I. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts. Chem Phys Lipids 2015; 192:23-32. [PMID: 26241883 DOI: 10.1016/j.chemphyslip.2015.07.022] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Increasing evidence supports the existence of lateral nanoscopic lipid domains in plasma membranes, known as lipid rafts. These domains preferentially recruit membrane proteins and lipids to facilitate their interactions and thereby regulate transmembrane signaling and cellular homeostasis. The functionality of raft domains is intrinsically dependent on their selectivity for specific membrane components; however, while the physicochemical determinants of raft association for lipids are known, very few systematic studies have focused on the structural aspects that guide raft partitioning of proteins. In this review, we describe biophysical and thermodynamic aspects of raft-mimetic liquid ordered phases, focusing on those most relevant for protein partitioning. Further, we detail the variety of experimental models used to study protein-raft interactions. Finally, we review the existing literature on mechanisms for raft targeting, including lipid post-translational modifications, lipid binding, and transmembrane domain features. We conclude that while protein palmitoylation is a clear raft-targeting signal, few other general structural determinants for raft partitioning have been revealed, suggesting that many discoveries lie ahead in this burgeoning field.
Collapse
Affiliation(s)
- Joseph Helmuth Lorent
- Department for Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, USA
| | - Ilya Levental
- Department for Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, USA.
| |
Collapse
|
16
|
Exacerbation of experimental autoimmune encephalomyelitis in ceramide synthase 6 knockout mice is associated with enhanced activation/migration of neutrophils. Immunol Cell Biol 2015; 93:825-36. [PMID: 25833068 DOI: 10.1038/icb.2015.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/17/2015] [Accepted: 03/28/2015] [Indexed: 01/03/2023]
Abstract
Ceramides are mediators of inflammatory processes. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed that CerS6 mRNA expression was upregulated 15-fold in peripheral blood leukocytes before the onset of EAE symptoms. In peripheral blood leukocytes from MS patients, a 3.9-fold upregulation was found. Total genetic deletion of CerS6 and the selective deletion of CerS6 in peripheral blood leucocytes exacerbated the progression of clinical symptoms in EAE mice. This was associated with enhanced leukocyte, predominantly neutrophil infiltration and enhanced demyelination in the lumbar spinal cord of EAE mice. Interferon-gamma/tumor necrosis factor alpha (IFN-γ/TNF-α) and granulocyte colony-stimulating factor (G-CSF) both drive EAE development and induce expression of the integrin CD11b and the chemokine receptor C-X-C motif chemokine receptor 2 (CXCR2), and we found they also induce CerS6 expression. In vivo, the genetic deletion of CerS6 enhanced the activation/migration of neutrophils, as reflected by an enhanced upregulation of CD11b and CXCR2. In vitro, the genetic deletion of CerS6 enhanced the activation status of IFN-γ/TNF-α-stimulated neutrophils, as shown by increased expression of nitric oxide and CD11b and an increased adhesion capacity. In G-CSF-stimulated neutrophils, the migration status was enhanced, as reflected by an elevated level of CXCR2 and an increased migration capacity. These data suggest that CerS6/C16-Cer mediates feedback regulation by inhibiting the formation of CD11b and CXCR2, which are induced either by IFN-γ/TNF-α or by G-CSF, respectively. We conclude that CerS6/C16-Cer mediates anti-inflammatory effects during the development of EAE and MS possibly by suppressing the migration and deactivation of neutrophils.
Collapse
|
17
|
Zhu Z, Tan Z, Li Y, Luo H, Hu X, Tang M, Hescheler J, Mu Y, Zhang L. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase. Nutrition 2015; 31:1025-30. [PMID: 26059378 DOI: 10.1016/j.nut.2015.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. METHODS Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. RESULTS DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. CONCLUSIONS The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression.
Collapse
Affiliation(s)
- Zhuoran Zhu
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhoubin Tan
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Luo
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwu Hu
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Tang
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Yangling Mu
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Lanqiu Zhang
- Department of Physiology, Chinese-German Stem Cell Center, Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Hubei Province, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Tianjin Nankai Hospital, Tianjin, China.
| |
Collapse
|
18
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
19
|
Huang J, Lee H, Zivkovic AM, Smilowitz JT, Rivera N, German JB, Lebrilla CB. Glycomic analysis of high density lipoprotein shows a highly sialylated particle. J Proteome Res 2014; 13:681-91. [PMID: 24417605 PMCID: PMC3975653 DOI: 10.1021/pr4012393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Many
of the functional proteins and lipids in high density lipoprotein
(HDL) particles are potentially glycosylated, yet very little is known
about the glycoconjugates of HDL. In this study, HDL was isolated
from plasma by sequential micro-ultracentrifugation, followed by glycoprotein
and glycolipid analysis. N-Glycans, glycopeptides, and gangliosides
were extracted and purified followed by analysis with nano-HPLC Chip
quadrupole time of flight mass spectrometry and MS/MS. HDL particles
were found to be highly sialylated. Most of the N-glycans (∼90%)
from HDL glycoproteins were sialylated with one or two neuraminic
acids (Neu5Ac). The most abundant N-glycan was a biantennary complex
type glycan with two sialic acids (Hexose5HexNAc4Neu5Ac2) and was found in multiple glycoproteins using
site-specific glycosylation analysis. The observed O-glycans were
all sialylated, and most contained a core 1 structure with two Neu5Acs,
including those that were associated with apolipoprotein CIII (ApoC-III)
and fetuin A. GM3 (monosialoganglioside, NeuAc2–3Gal1–4Glc–Cer)
and GD3 (disialoganglioside, NeuAc2–8NeuAc2–3Gal1–4Glc–Cer)
were the major gangliosides in HDL. A 60% GM3 and 40% GD3 distribution
was observed. Both GM3 and GD3 were composed of heterogeneous ceramide
lipid tails, including d18:1/16:0 and d18:1/23:0. This report describes
for the first time a glycomic approach for analyzing HDL, highlighting
that HDL are highly sialylated particles.
Collapse
Affiliation(s)
- Jincui Huang
- Department of Chemistry, ‡Department of Food Science and Technology, and §Foods for Health Institute, University of California , Davis, California 95616, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Schütte OM, Ries A, Orth A, Patalag LJ, Römer W, Steinem C, Werz DB. Influence of Gb3 glycosphingolipids differing in their fatty acid chain on the phase behaviour of solid supported membranes: chemical syntheses and impact of Shiga toxin binding. Chem Sci 2014. [DOI: 10.1039/c4sc01290a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Recent progress in synthetic and biological studies of GPI anchors and GPI-anchored proteins. Curr Opin Chem Biol 2013; 17:1006-13. [PMID: 24128440 DOI: 10.1016/j.cbpa.2013.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
Covalent attachment of glycosylphosphatidylinositols (GPIs) to the protein C-terminus is one of the most common posttranslational modifications in eukaryotic cells. In addition to anchoring surface proteins to the cell membrane, GPIs also have many other important biological functions, determined by their unique structure and property. This account has reviewed the recent progress made in disclosing GPI and GPI-anchored protein biosynthesis, in the chemical and chemoenzymatic synthesis of GPIs and GPI-anchored proteins, and in understanding the conformation, organization, and distribution of GPIs in the lipid membrane.
Collapse
|
22
|
Vihervaara T, Käkelä R, Liebisch G, Tarasov K, Schmitz G, Olkkonen VM. Modification of the lipidome in RAW264.7 macrophage subjected to stable silencing of oxysterol-binding proteins. Biochimie 2013; 95:538-47. [DOI: 10.1016/j.biochi.2012.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/04/2012] [Indexed: 12/16/2022]
|
23
|
Matsumori N, Yasuda T, Okazaki H, Suzuki T, Yamaguchi T, Tsuchikawa H, Doi M, Oishi T, Murata M. Comprehensive Molecular Motion Capture for Sphingomyelin by Site-Specific Deuterium Labeling. Biochemistry 2012; 51:8363-70. [DOI: 10.1021/bi3009399] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nobuaki Matsumori
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Hiroki Okazaki
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Takashi Suzuki
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Toshiyuki Yamaguchi
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
- ERATO,
Lipid Active Structure
Project, Japan Science and Technology Agency, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Mototsugu Doi
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
| | - Tohru Oishi
- Department of Chemistry, Graduate
School of Sciences, Kyushu University,
Higashi-ku, Fukuoka 812-8581, Japan
| | - Michio Murata
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan
- ERATO,
Lipid Active Structure
Project, Japan Science and Technology Agency, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
24
|
Raimondo F, Morosi L, Chinello C, Perego R, Bianchi C, Albo G, Ferrero S, Rocco F, Magni F, Pitto M. Protein profiling of microdomains purified from renal cell carcinoma and normal kidney tissue samples. ACTA ACUST UNITED AC 2012; 8:1007-16. [DOI: 10.1039/c2mb05372a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Nelson LD, Chiantia S, London E. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity. Biophys J 2011; 99:3255-63. [PMID: 21081073 DOI: 10.1016/j.bpj.2010.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/03/2010] [Accepted: 09/16/2010] [Indexed: 12/15/2022] Open
Abstract
Upon interaction with cholesterol, perfringolysin O (PFO) inserts into membranes and forms a rigid transmembrane (TM) β-barrel. PFO is believed to interact with liquid ordered lipid domains (lipid rafts). Because the origin of TM protein affinity for rafts is poorly understood, we investigated PFO raft affinity in vesicles having coexisting ordered and disordered lipid domains. Fluorescence resonance energy transfer (FRET) from PFO Trp to domain-localized acceptors indicated that PFO generally has a raft affinity between that of LW peptide (low raft affinity) and cholera toxin B (high raft affinity) in vesicles containing ordered domains rich in brain sphingomyelin or distearoylphosphatidylcholine. FRET also showed that ceramide, which increases exposure of cholesterol to water and thus displaces it from rafts, does not displace PFO from ordered domains. This can be explained by shielding of PFO-bound cholesterol from water. Finally, FRET showed that PFO affinity for ordered domains was higher in its non-TM (prepore) form than in its TM form, demonstrating that the TM portion of PFO interacts unfavorably with rafts. Microscopy studies in giant unilamellar vesicles confirmed that PFO exhibits intermediate raft affinity, and showed that TM PFO (but not non-TM PFO) concentrated at the edges of liquid ordered domains. These studies suggest that a combination of binding to raft-associating molecules and having a rigid TM structure that is unable to pack well in a highly ordered lipid environment can control TM protein domain localization. To accommodate these constraints, raft-associated TM proteins in cells may tend to locate within liquid disordered shells encapsulated within ordered domains.
Collapse
Affiliation(s)
- Lindsay D Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | | | |
Collapse
|
26
|
The lipid-modulating effects of a CD4-specific recombinant antibody correlate with ZAP-70 segregation outside membrane rafts. Immunol Lett 2010; 133:62-9. [DOI: 10.1016/j.imlet.2010.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/01/2010] [Accepted: 07/18/2010] [Indexed: 11/17/2022]
|
27
|
Moral-Naranjo MT, Montenegro MF, Muñoz-Delgado E, Campoy FJ, Vidal CJ. The levels of both lipid rafts and raft-located acetylcholinesterase dimers increase in muscle of mice with muscular dystrophy by merosin deficiency. Biochim Biophys Acta Mol Basis Dis 2010; 1802:754-64. [DOI: 10.1016/j.bbadis.2010.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/12/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
28
|
Camano S, Lazaro A, Moreno-Gordaliza E, Torres AM, de Lucas C, Humanes B, Lazaro JA, Milagros Gomez-Gomez M, Bosca L, Tejedor A. Cilastatin attenuates cisplatin-induced proximal tubular cell damage. J Pharmacol Exp Ther 2010; 334:419-29. [PMID: 20435919 DOI: 10.1124/jpet.110.165779] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A major area in cancer therapy is the search for protective strategies against cisplatin-induced nephrotoxicity. We investigated the protective effect of cilastatin on cisplatin-induced injury to renal proximal tubular cells. Cilastatin is a specific inhibitor of renal dehydrodipeptidase I (DHP-I), which prevents hydrolysis of imipenem and its accumulation in the proximal tubule. Primary cultures of proximal cells were treated with cisplatin (1-30 microM) in the presence or absence of cilastatin (200 microg/ml). Apoptosis and mitochondrial injury were assessed by different techniques. Cisplatin uptake and DNA binding were measured by inductively coupled plasma spectrometry. HeLa cells were used to control the effect of cilastatin on the tumoricidal activity of cisplatin. Cisplatin increased cell death, apoptotic-like morphology, caspase activation, and mitochondrial injury in proximal tubular cells in a dose- and time-dependent way. Concomitant treatment with cilastatin reduced cisplatin-induced changes. Cilastatin also reduced the DNA-bound platinum but did not modify cisplatin-dependent up-regulation of death receptors (Fas) or ligands (tumor necrosis factor alpha, Fas ligand). In contrast, cilastatin did not show any effects on cisplatin-treated HeLa cells. Renal DHP-I was virtually absent in HeLa cells. Cilastatin attenuates cisplatin-induced cell death in proximal tubular cells without reducing the cytotoxic activity of cisplatin in tumor cells. Our findings suggest that the affinity of cilastatin for renal dipeptidase makes this effect specific for proximal tubular cells and may be related to a reduction in intracellular drug accumulation. Therefore, cilastatin administration might represent a novel strategy in the prevention of cisplatin-induced acute renal injury.
Collapse
Affiliation(s)
- Sonia Camano
- Renal Physiopathology Laboratory, Department of Nephrology, Hospital General Universitario Gregorio Maranon, 28007 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Myelin, DIGs, and membrane rafts in the central nervous system. Prostaglandins Other Lipid Mediat 2009; 91:118-29. [PMID: 19379822 DOI: 10.1016/j.prostaglandins.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/21/2022]
Abstract
Over the past 40 years our understanding of the organization of cell membranes has changed dramatically. Membranes are no longer viewed as a homogenous sea of phospholipids studded with randomly positioned islands of proteins. Our current view of the membrane involves the formation of small lipid clusters, comprised mainly of cholesterol and sphingolipids, known as membrane rafts. These lipid clusters apparently include and exclude specific proteins leading to the hypothesis that these domains (1) regulate cellular polarity and compartmentalization through trafficking and sorting, (2) provide platforms for cellular signaling and adhesion, and (3) function as cellular gate keepers. Tremendous controversy surrounds the concept of membrane rafts primarily because these small, highly dynamic entities are too small to be observed with traditional microscopic methods and the most utilized approach for raft analysis relies on poorly quantified, inconsistent biochemical extractions. New analytical approaches are being developed and applied to the study of membrane rafts and these techniques provide great promise for furthering our understanding of these enigmatic domains. In this review we will provide a brief summary of the current understanding of membrane rafts, utilizing the CNS myelin literature for illustrative purposes, and present caveats that should be considered when studying these domains.
Collapse
|
30
|
Józefowski S, Sobota A, Kwiatkowska K. How Mycobacterium tuberculosis subverts host immune responses. Bioessays 2008; 30:943-54. [PMID: 18800365 DOI: 10.1002/bies.20815] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis which has infected one third of the mankind and causes 2-3 million deaths worldwide each year. The persistence of the infection ensues from the ability of M. tuberculosis to subvert host immune responses in favor of survival and growth of mycobacteria in macrophages. The mechanisms by which M. tuberculosis manipulates the host immune system have only recently come to light. These activities are attributed to lipoarabinomannans (LAM) and their precursors lipomannans (LM), two predominant glycolipids of M. tuberculosis cell wall. LM are able to skew anti-mycobacterial immune responses into un-protective ones, while LAM evoke immunosupression upon binding to macrophage and dendritic cell receptors specialized in binding to "self" host components. A newly emerging idea implicates plasma membrane rafts in LM and LAM signaling. Depending on acylation patterns, the glycolipids may either directly incorporate into the raft membrane via mannosylphosphatidylinositol anchors or interact with raft-associated proteins to affect the assembly of receptor signaling complexes.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Nencki Institute of Experimental Biology, Department of Cell Biology, Warsaw, Poland
| | | | | |
Collapse
|
31
|
Seantier B, Giocondi MC, Grimellec CL, Milhiet PE. Probing supported model and native membranes using AFM. Curr Opin Colloid Interface Sci 2008. [DOI: 10.1016/j.cocis.2008.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Jin ZX, Huang CR, Dong L, Goda S, Kawanami T, Sawaki T, Sakai T, Tong XP, Masaki Y, Fukushima T, Tanaka M, Mimori T, Tojo H, Bloom ET, Okazaki T, Umehara H. Impaired TCR signaling through dysfunction of lipid rafts in sphingomyelin synthase 1 (SMS1)-knockdown T cells. Int Immunol 2008; 20:1427-37. [PMID: 18820264 DOI: 10.1093/intimm/dxn100] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
During T cell activation, TCRs cluster at the center of the T cell-antigen-presenting cell interface forming the central supramolecular activation cluster. Although it has been suggested that sphingolipid- and cholesterol-rich microdomains, termed lipid rafts, form platforms for the regulation and transduction of TCR signals, an actual role for membrane sphingomyelin (SM), a key component of lipid rafts, has not been reported. After cloning a gene responsible for SM synthesis, sphingomyelin synthase (SMS) 1, we established a SM-knockdown cell line (Jurkat-SMS1/kd) by transfection of SMS1-short-interfering RNA into Jurkat T cells, which is deficient in membrane expression of SM. Upon CD3 stimulation, expression of CD69 (the earliest leukocyte activation antigen), activation-induced cell adhesion and proliferation as well as TCR clustering was severely impaired in Jurkat-SMS1/kd cells. CD3-induced tyrosine phosphorylation and association of linker for activation of T cell with ZAP-70 and Grb2 and phosphorylation of protein kinase C (PKC) were also severely impaired in Jurkat-SMS1/kd cells. Finally, translocation of TCR, ZAP-70 and PKC into lipid rafts was markedly decreased in Jurkat-SMS1/kd cells. These findings indicate that membrane SM is crucial for TCR signal transduction, leading to full T cell activation through lipid raft function.
Collapse
Affiliation(s)
- Zhe-Xiong Jin
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Käkelä R, Mattila M, Hermansson M, Haimi P, Uphoff A, Paajanen V, Somerharju P, Vornanen M. Seasonal acclimatization of brain lipidome in a eurythermal fish (Carassius carassius) is mainly determined by temperature. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1716-28. [DOI: 10.1152/ajpregu.00883.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crucian carp ( Carassius carassius) is an excellent vertebrate model for studies on temperature adaptation in biological excitable membranes, since the species can tolerate temperatures from 0 to +36°C. To determine how temperature affects the lipid composition of brain, the fish were acclimated for 4 wk at +30, +16, or +4°C in the laboratory, or seasonally acclimatized individuals were captured from the wild throughout the year (temperature = +1 to +23°C), and the brain glycerophospholipid and sphingolipid compositions were analyzed in detail by electrospray-ionization mass spectrometry. Numerous significant temperature-related changes were found in the molecular species composition of the membrane lipids. The most notable and novel finding was a large (∼3-fold) increase of the di-22:6n-3 phosphatidylserine and phosphatidylethanolamine species in the cold. Since the increase of 22:6n-3 in the total fatty acyl pool of the brain was small, the formation of di-22:6n-3 aminophospholipid species appears to be a specific adaptation to low temperature. Such highly unsaturated species could be needed to maintain adequate membrane fluidity in the vicinity of transporters and other integral membrane proteins. Plasmalogens increased somewhat at higher temperatures, possibly to protect membranes against oxidation. The modifications of brain lipidome during the 4-wk laboratory acclimation were, in many respects, similar to those found in the wild, which indicates that the seasonal changes observed in the wild are temperature dependent rather than induced by other environmental factors.
Collapse
|
34
|
Moral-Naranjo MT, Montenegro MF, Muñoz-Delgado E, Campoy FJ, Vidal CJ. Targeting of acetylcholinesterase to lipid rafts of muscle. Chem Biol Interact 2008; 175:312-7. [PMID: 18513710 DOI: 10.1016/j.cbi.2008.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 01/07/2023]
Abstract
Despite the great progress made in setting the basis for the molecular diversity of acetylcholinesterase (AChE), an explanation for the existence of two types of amphiphilic subunits, with and without glicosylphosphatidylinositol (GPI) (Types I and II), has not been provided yet. In searching whether, as for the deficiency of dystrophin, that of merosin (laminin-alpha2 chain) alters the number of caveolae in muscle, a high increase in caveolin-3 (Cav3) was observed in the Triton X-100-resistant membranes (TRM) isolated from muscle of merosin-deficient dystrophic mice (Lama2dy). The rise in Cav3 was accompanied by that of non-caveolar lipid rafts, as showed by the greater ecto-5'-nucleotidase (eNT) activity, a marker of non-caveolar rafts, in TRM of dystrophic muscle. The observation of AChE activity in TRM, the increased levels of rafts and raft-bound AChE activity in merosin-deficient muscle and the presence of phospholipase C-sensitive AChE dimers in TRM supported targeting of glypiated AChE to rafts. This issue and the involvement of TRM in conveying nicotinic receptors to the neuromuscular junction and particular muscarinic receptors to cardiac sarcolemma strongly support a role for lipid rafts in targeting ACh receptors and glypiated AChE. Their nearby location in the surface membrane may provide cells with a fine tuning for regulating cholinergic responses.
Collapse
Affiliation(s)
- M T Moral-Naranjo
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
35
|
Characterizing the interactions between GPI-anchored alkaline phosphatases and membrane domains by AFM. Pflugers Arch 2007; 456:179-88. [DOI: 10.1007/s00424-007-0409-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/12/2007] [Accepted: 11/20/2007] [Indexed: 12/12/2022]
|