1
|
Naik R, Allu SG, Purnima D. PP/Jute Fiber Composites: Effect of Biological Route of Surface Treatment and Content of Jute on Composites. Appl Biochem Biotechnol 2024; 196:2869-2880. [PMID: 37335456 DOI: 10.1007/s12010-023-04589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Jute as a fiber has many applications. It is also used in polymers as reinforcement due to its good tensile properties. However, when it is used in polymer matrices, there is a lack of adhesion between the polymer and jute fiber. Surface treatment of fiber using chemicals has been found to improve the properties. However, the use of chemicals causes environmental pollution, when these chemicals are discharged into the environment. In this paper, an attempt has been made to study the effect of the biological route to surface treat the jute fiber. The effect of surface treatment on the morphology of jute was examined. A comparative study was on the crystalline, thermal, and tensile fracture morphology of the composites to understand the effect of the incorporation of untreated and treated jute fibers in polypropylene (PP).
Collapse
Affiliation(s)
- Rudresh Naik
- Department of Chemical Engineering, Birla Institute of Technology and Science, Jawaharnagar, Shamirpet Mandal, Hyderabad, Telangana, 500078, India
| | - Sai Gowtham Allu
- Department of Chemical Engineering, Birla Institute of Technology and Science, Jawaharnagar, Shamirpet Mandal, Hyderabad, Telangana, 500078, India
| | - D Purnima
- Department of Chemical Engineering, Birla Institute of Technology and Science, Jawaharnagar, Shamirpet Mandal, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
2
|
Kumar D, Bhardwaj R, Jassal S, Goyal T, Khullar A, Gupta N. Application of enzymes for an eco-friendly approach to textile processing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71838-71848. [PMID: 34651264 DOI: 10.1007/s11356-021-16764-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Textile industry is one of the oldest industries existing from several centuries. Major concern of the industry is to design, produce, and distribute yarn, cloth, and clothing. Diverse physical and chemical operations are required in order to achieve this. Environmental concerns related to textile industry have attained attention all around the world as it is generating large amounts of effluents having various toxic agents and chemicals. Enzymes have been suggested as the best possible alternative to replace or reduce these hazardous and toxic chemicals. Enzymes like amylase, cellulase, catalase, protease, pectinase, laccase, and lipase have widely been used in textile manufacturing processes. Use of enzymatic approach is very promising as they are eco-friendly, produce high-quality products, and lead to the reduction of energy, water, and time. This review highlights the significance of different enzymes employed in the textile industry at various stages along with the conventional textile processing.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Microbiology, DAV University, Jalandhar, Punjab, India.
| | - Raveena Bhardwaj
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sunena Jassal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Tanya Goyal
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Aastha Khullar
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, BMS Block I, Sector 25, South Campus Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Handika SO, Lubis MAR, Sari RK, Laksana RPB, Antov P, Savov V, Gajtanska M, Iswanto AH. Enhancing Thermal and Mechanical Properties of Ramie Fiber via Impregnation by Lignin-Based Polyurethane Resin. MATERIALS 2021; 14:ma14226850. [PMID: 34832252 PMCID: PMC8617714 DOI: 10.3390/ma14226850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022]
Abstract
In this study, lignin isolated and fractionated from black liquor was used as a pre-polymer to prepare bio-polyurethane (Bio-PU) resin, and the resin was impregnated into ramie fiber (Boehmeria nivea (L.) Gaudich) to improve its thermal and mechanical properties. The isolated lignin was fractionated by one-step fractionation using two different solvents, i.e., methanol (MeOH) and acetone (Ac). Each fractionated lignin was dissolved in NaOH and then reacted with a polymeric 4,4-methane diphenyl diisocyanate (pMDI) polymer at an NCO/OH mole ratio of 0.3. The resulting Bio-PU was then used in the impregnation of ramie fiber. The characterization of lignin, Bio-PU, and ramie fiber was carried out using several techniques, i.e., Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), pyrolysis-gas-chromatography-mass-spectroscopy (Py-GCMS), Micro Confocal Raman spectroscopy, and an evaluation of fiber mechanical properties (modulus of elasticity and tensile strength). Impregnation of Bio-PU into ramie fiber resulted in weight gain ranging from 6% to 15%, and the values increased when extending the impregnation time. The reaction between the NCO group on Bio-PU and the OH group on ramie fiber forms a C=O group of urethane as confirmed by FTIR and Micro Confocal Raman spectroscopies at a wavenumber of 1600 cm−1. Based on the TGA analysis, ramie fiber with lignin-based Bio-PU had better thermal properties than ramie fiber before impregnation with a greater weight residue of 21.7%. The mechanical properties of ramie fiber also increased after impregnation with lignin-based Bio-PU, resulting in a modulus of elasticity of 31 GPa for ramie-L-isolated and a tensile strength of 577 MPa for ramie-L-Ac. The enhanced thermal and mechanical properties of impregnated ramie fiber with lignin-based Bio-PU resins could increase the added value of ramie fiber and enhance its more comprehensive industrial application as a functional material.
Collapse
Affiliation(s)
- Sucia Okta Handika
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia;
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomaterials, National Research and Innovation Agency, Cibinong 16911, Indonesia;
- Correspondence: (M.A.R.L.); (R.K.S.); (M.G.)
| | - Rita Kartika Sari
- Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor 16680, Indonesia;
- Correspondence: (M.A.R.L.); (R.K.S.); (M.G.)
| | | | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria; (P.A.); (V.S.)
| | - Viktor Savov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria; (P.A.); (V.S.)
| | - Milada Gajtanska
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia
- Correspondence: (M.A.R.L.); (R.K.S.); (M.G.)
| | - Apri Heri Iswanto
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| |
Collapse
|
4
|
Rebelo V, Silva YD, Ferreira S, Toledo Filho R, Giacon V. Effects of mercerization in the chemical and morphological properties of amazon piassava. POLIMEROS 2019. [DOI: 10.1590/0104-1428.01717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
|
6
|
Thakur K, Kalia S, Sharma N, Pathania D. Laccase-mediated biografting of p -coumaric acid for development of antibacterial and hydrophobic properties in coconut fibers. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Thakur K, Kalia S, Kaith BS, Pathania D, Kumar A. Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. RSC Adv 2015. [DOI: 10.1039/c5ra14891j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface modification of coconut fibers was carried out by laccase-assisted biografting of syringaldehyde for their use as reinforcing material in the preparation of biocomposites.
Collapse
Affiliation(s)
- Kamini Thakur
- Department of Chemistry
- Shoolini University
- Solan-173212
- India
| | - Susheel Kalia
- Department of Chemistry
- Army Cadet College Wing
- Indian Military Academy
- Dehradun-248007
- India
| | - B. S. Kaith
- Department of Chemistry
- Dr. B. R. Ambedkar National Institute of Technology
- Jalandhar-144011
- India
| | | | - Amit Kumar
- Department of Chemistry
- Shoolini University
- Solan-173212
- India
| |
Collapse
|
8
|
Kalia S, Thakur K, Kumar A, Celli A. Laccase-assisted surface functionalization of lignocellulosics. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Kalia S, Vashistha S. Surface Modification of Sisal Fibers Using Cellulase and Microwave-Assisted Grafting: A Study of Morphology, Crystallinity, and Thermal Stability. INT J POLYM MATER PO 2012. [DOI: 10.1080/00914037.2011.617342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Abstract
Cellulose macro- and nanofibers have gained increasing attention due to the high strength and stiffness, biodegradability and renewability, and their production and application in development of composites. Application of cellulose nanofibers for the development of composites is a relatively new research area. Cellulose macro- and nanofibers can be used as reinforcement in composite materials because of enhanced mechanical, thermal, and biodegradation properties of composites. Cellulose fibers are hydrophilic in nature, so it becomes necessary to increase their surface roughness for the development of composites with enhanced properties. In the present paper, we have reviewed the surface modification of cellulose fibers by various methods. Processing methods, properties, and various applications of nanocellulose and cellulosic composites are also discussed in this paper.
Collapse
|