1
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Sharma A, Mittal A, Puri V, Kumar P, Singh I. Curcumin-loaded, alginate-gelatin composite fibers for wound healing applications. 3 Biotech 2020; 10:464. [PMID: 33088660 DOI: 10.1007/s13205-020-02453-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022] Open
Abstract
The wound healing process is characterized by varied biological and molecular cascades including inflammation, tissue proliferation, and remodeling phase. To augment and maintain these cascades, an all-natural matrix system is proposed. Biocompatible biopolymers, sodium alginate and gelatin, were employed to prepare microfibers via extrusion-gelation into a physical crosslinking solution. Curcumin, an anti-inflammatory, anti-oxidant and wound healing agent, was loaded into the fibers as a natural bioactive compound. Curcumin-loaded composite microfibers and blank microfibers were fabricated using biopolymers such as sodium alginate and gelatin. The formulation batches were coded as A1G9-A10G0 according to the varied concentrations of sodium alginate and gelatin. The molecular transitions within the composite microfibers were characterized using FTIR and were further corroborated using molecular mechanics analysis. In mechanical properties tensile strength and elongation-at-break (extensibility) were ranging between 1.08 ± 0.01 to 3.53 ± 0.41 N/mm2 and 3.89 ± 0.18 to 0.61 ± 0.03%. The morphological analysis confirmed the formation and fabrication of the microfibers. In addition, physical evaluation including matrix degradation and entrapment efficiency was performed to give a comparative account of various formulations. The water uptake capacity of the blank and curcumin-loaded composite fibers was found to be in the range of 30.77 ± 2.17 to 100.00 ± 5.99 and 22.34 ± 1.11 to 56.34 ± 4.68, respectively. Composite microfibers presented a cumulative release of 85% in 72 h, confirming the prolonged release potential of the composite fibers. The drug release followed an anomalous (non-Fickian) release behavior asserting the role of degradation and diffusion. In an in vivo full-thickness cutaneous wound model, the composite microfibers provided higher degree of contraction 96.89 ± 3.76% as compared to the marketed formulation (Vicco turmeric cream). In conclusion, this all-natural, alginate-gelatin-curcumin composite has the potential to be explored as a cost-effective wound healing platform.
Collapse
|
3
|
Wu HL, Bremner DH, Li HY, Shi QQ, Wu JZ, Xiao RQ, Zhu LM. A novel multifunctional biomedical material based on polyacrylonitrile: Preparation and characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:702-9. [DOI: 10.1016/j.msec.2016.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/08/2016] [Indexed: 01/02/2023]
|