1
|
Qin Y, Wang Y, Tang Z, Chen K, Wang Z, Cheng G, Chi H, Soteyome T. A pH-sensitive film based on chitosan/gelatin and anthocyanin from Zingiber striolatum Diels for monitoring fish freshness. Food Chem X 2024; 23:101639. [PMID: 39113745 PMCID: PMC11304880 DOI: 10.1016/j.fochx.2024.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
As a new type of packaging method, the anthocyanin-based pH-sensitive indicator film has gained much attention owing to low cost, small size, and visually informative property. In this study, an intelligent film based on chitosan/gelatin (CG) matrix with Zingiber striolatum Diels (ZSD) anthocyanin for fish freshness monitoring was developed. The film properties, including thickness, moisture content, color, mechanical properties, UV-vis light barrier property, as well as pH and ammonia sensitivity, were evaluated. The CG-ZSD films exhibited a more compact structure when compared with the CG film. The CG-ZSD20 film showed the highest elongation at break (6.33 ± 0.62%) and lowest tensile strength (20.0 ± 0.58 MPa). FTIR spectra revealed the strong hydrogen bond interactions between ZSD and polymer matrix. Film incorporated with 15% anthocyanin extract has increased melting temperature at 118.9 °C, and a lower weight loss (13.8%) at melting temperature. In pH 1-14 buffer, the color of CG-ZSD films underwent a significant change from red to yellow-green. The CG-ZSD15 film was utilized for monitoring fish freshness and showed visible color changes from deep purple to brown. The total volatile basic nitrogen content and pH value changes of fish were closely related to the visual color changes in film. This demonstrated that the film was a highly pH-sensitive film for quantifying fish freshness in real-time.
Collapse
Affiliation(s)
- Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yurou Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhenya Tang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650550, China
| | - Kejun Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Hai Chi
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Thanapop Soteyome
- Rajamangala University of Technology Phra Nakhon, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Li Y, Hua Z, Li Y, Chen T, Alamri AS, Xu Y, Gong W, Hou Y, Alhomrani M, Hu J. Development of multifunctional chitosan-based composite film loaded with tea polyphenol nanoparticles for strawberry preservation. Int J Biol Macromol 2024; 275:133648. [PMID: 38969040 DOI: 10.1016/j.ijbiomac.2024.133648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Incorporating polysaccharide-based composite films with nanobiotechnology offers a new strategy for food preservation. This study initially focuses on the preparation of tea polyphenol nanoparticles (TPNP), novel and derived from natural antibacterial agents, which serve to improve stability. Afterwards chitosan-based composite films loaded with TPNP (CTN film) were developed using solution casting method. The incorporation of TPNP significantly improved the UV/water/oxygen barrier properties, mechanical properties and thermal stability, alongside notable physical properties including water contact angle (93.65 ± 0.04°), low water vapor permeability (33.72 ± 3.32 g/m2h) and oxygen permeability (0.11 ± 0.02 g/m2h), tensile strength (61.83 ± 0.70 %), and elongation at break (31.60 ± 6.12 %). The CTN film not only exhibited exceptional biodegradability and nontoxicity, but also demonstrated remarkable antimicrobial efficacy against Escherichia coli and Bacillus subtilis. Additionally, it showcased potent antioxidant activity, boasting DPPH and ABTS radical scavenging rates up to 89.25 ± 0.18 % and 93.84 ± 0.42 %. The CTN film was successfully formed on the surface of strawberries through dip-coating process and their shelf life was extended from 4 to 6 days at 20 °C without side-effect on the weight loss, harness, pH and total soluble solids, illustrating its potential for enhancing food preservation.
Collapse
Affiliation(s)
- Yuxin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ziqi Hua
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Yu Xu
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yiyang Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Sayed A, Mazrouaa AM, Mohamed MG, Abdel-Raouf MES. Green synthesis of chitosan/erythritol/graphene oxide composites for simultaneous removal of some toxic species from simulated solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25903-25919. [PMID: 36348240 PMCID: PMC9995588 DOI: 10.1007/s11356-022-23951-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
In this study, chitosan (Ch) is adapted via green methodology including sonication induced crosslinking with different weight ratios of erythritol (Er) from (Ch-Er)1 to (Ch-Er)4. The products were casted in the form of thin films. The chemical modification was proved via FTIR spectroscopy. Then, the modified products were verified via an atomic force microscopy (AFM) investigation for their topography and surface properties. The data revealed that the optimized sample was (Ch-Er)3. This sample was further modified by different weight ratios of graphene oxide 0.1, 0.2, 0.4, and 0.8 wt./wt. (symbolized as (Ch-Er)3GO1, (Ch-Er)3GO2, (Ch-Er)3GO4, and (Ch-Er)3GO8 respectively). The prepared samples were investigated by different analytical tools. Then, the adjusted sample (Ch-Er)3GO2 was irradiated by electron beam (e-beam) at 10 and 20 kGy of irradiation doses to give samples (Ch-Er)3GO2R10 and (Ch-Er)3GO2R20, respectively. The AFM data of the irradiated samples showed that the pore size decreases, and surface roughness increases at higher energy e-beam due to the formation of more crosslinking points. The optimum samples of the prepared formulations were tested as sorbent materials for simultaneous elimination of methylene blue (MB) dye and mercury cation (Hg2+) from simulated solutions. The maximum removal of both MB dye and Hg2+ cation was achieved by (Ch-Er)3GO2R10 (186.23 mg g-1 and 205 mg g-1) respectively.
Collapse
Affiliation(s)
- Asmaa Sayed
- Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Azza M Mazrouaa
- Polymer Lab, Department of Petrochemicals, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Manal G Mohamed
- Polymer Lab, Department of Petrochemicals, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Manar El-Sayed Abdel-Raouf
- Additives Lab, Department of Petroleum Application, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| |
Collapse
|
4
|
Ulu A, Ateş B. Tailor-made shape memory stents for therapeutic enzymes: A novel approach to enhance enzyme performance. Int J Biol Macromol 2021; 185:966-982. [PMID: 34237367 DOI: 10.1016/j.ijbiomac.2021.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
Herein, our suggestion is to immobilize enzymes in-situ on absorbable shape-memory stents instead of injecting therapeutic enzymes into the blood. Chitosan (CHI)-based stents were tailored as novel support and the enzyme-immobilizing ability was elucidated using L-asparaginase (L-ASNase). For developing shape-memory stents, CHI-glycerol (GLY) solution was prepared and further blended with different ratios of polyethylene glycol (PEG), and polyvinyl alcohol (PVA). Afterward, the blends were modified by ionic crosslinking with sodium tripolyphosphate to obtain a shape-memory character. L-ASNase was included in the blends by using in-situ method before ionic crosslinking. The prepared stents, with or without L-ASNase, were comprehensively characterized by using several techniques. Collectively, immobilized L-ASNase exhibited much better performance in immobilization parameters than free one, thanks to its improved stability and reusability. For instance, CHI/GLY/PEG-3@L-ASNase retained about 70% of the initial activity after storage at 30 °C for 2 weeks, whereas the free form lost half of its initial activity. Besides, it retained 73.4% residual activity after 15 consecutive cycles. Most importantly, stent formulations exhibited ~60% activity in the bioreactor system after 4 weeks of incubation. Given the above results, shape-memory stents can be a promising candidate as a new platform for immobilization, especially in the blood circulation system.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Turkey
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, İnönü University, 44280 Malatya, Turkey.
| |
Collapse
|
5
|
Agarose-based biomaterials for advanced drug delivery. J Control Release 2020; 326:523-543. [PMID: 32702391 DOI: 10.1016/j.jconrel.2020.07.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
Agarose is a prominent marine polysaccharide representing reversible thermogelling behavior, outstanding mechanical properties, high bioactivity, and switchable chemical reactivity for functionalization. As a result, agarose has received particular attention in the fabrication of advanced delivery systems as sophisticated carriers for therapeutic agents. The ever-growing use of agarose-based biomaterials for drug delivery systems resulted in rapid growth in the number of related publications, however still, a long way should be paved to achieve FDA approval for most of the proposed products. This review aims at a classification of agarose-based biomaterials and their derivatives applicable for controlled/targeted drug delivery purposes. Moreover, it attempts to deal with opportunities and challenges associated with the future developments ahead of agarose-based biomaterials in the realm of advanced drug delivery. Undoubtedly, this class of biomaterials needs further advancement, and a lot of critical questions have yet to be answered.
Collapse
|