1
|
Zheng L, Wang M, Li Y, Xiong Y, Wu C. Recycling and Degradation of Polyamides. Molecules 2024; 29:1742. [PMID: 38675560 PMCID: PMC11052090 DOI: 10.3390/molecules29081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
As one of the five major engineering plastics, polyamide brings many benefits to humans in the fields of transportation, clothing, entertainment, health, and more. However, as the production of polyamide increases year by year, the pollution problems it causes are becoming increasingly severe. This article reviews the current recycling and treatment processes of polyamide, such as chemical, mechanical, and energy recovery, and degradation methods such as thermal oxidation, photooxidation, enzyme degradation, etc. Starting from the synthesis mechanism of polyamide, it discusses the advantages and disadvantages of different treatment methods of polyamide to obtain more environmentally friendly and economical treatment schemes. Finding enzymes that can degrade high-molecular-weight polyamides, exploring the recovery of polyamides under mild conditions, synthesizing environmentally degradable polyamides through copolymerization or molecular design, and finally preparing degradable bio-based polyamides may be the destination of polyamide.
Collapse
Affiliation(s)
- Lin Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Mengjin Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yaoqin Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
| | - Yan Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-Weight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (L.Z.); (M.W.); (Y.L.); (Y.X.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| |
Collapse
|
2
|
Quartinello F, Subagia R, Zitzenbacher S, Reich J, Vielnascher R, Becher E, Hall M, Ribitsch D, Guebitz GM. Dihydropyrimidinase from Saccharomyces kluyveri can hydrolyse polyamides. Front Bioeng Biotechnol 2023; 11:1158226. [PMID: 37180040 PMCID: PMC10169691 DOI: 10.3389/fbioe.2023.1158226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
In Saccharomyces kluyveri, dihydropyrimidinase (DHPaseSK) is involved in the pyrimidine degradation pathway, which includes the reversible ring cleavage between nitrogen 3 and carbon 4 of 5,6-dihydrouracil. In this study, DPHaseSK was successfully cloned and expressed in E. coli BL-21 Gold (DE3) with and without affinity tags. Thereby, the Strep-tag enabled fastest purification and highest specific activity (9.5 ± 0.5 U/mg). The biochemically characterized DHPaseSK_Strep had similar kinetic parameters (Kcat/Km) on 5,6-dihydrouracil (DHU) and para-nitroacetanilide respectively, with 7,229 and 4060 M-1 s-1. The hydrolytic ability of DHPaseSK_Strep to polyamides (PA) was tested on PA consisting of monomers with different chain length (PA-6, PA-6,6, PA-4,6, PA-4,10 and PA-12). According to LC-MS/TOF analysis, DHPaseSK_Strep showed a preference for films containing the shorter chain monomers (e.g., PA-4,6). In contrast, an amidase from Nocardia farcinica (NFpolyA) showed some preference for PA consisting of longer chain monomers. In conclusion, in this work DHPaseSK_Strep was demonstrated to be able to cleave amide bonds in synthetic polymers, which can be an important basis for development of functionalization and recycling processes for polyamide containing materials.
Collapse
Affiliation(s)
- Felice Quartinello
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Raditya Subagia
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | | | - Johanna Reich
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | - Robert Vielnascher
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | - Erik Becher
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, Graz, Austria
- BioHealth, University of Graz, Graz, Austria
| | - Doris Ribitsch
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg M. Guebitz
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
|
4
|
Hamilton MF, Otte AD, Gregory RL, Pinal R, Ferreira-Zandoná A, Bottino MC. Physicomechanical and antibacterial properties of experimental resin-based dental sealants modified with nylon-6 and chitosan nanofibers. J Biomed Mater Res B Appl Biomater 2014; 103:1560-8. [PMID: 25532852 DOI: 10.1002/jbm.b.33342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/07/2014] [Accepted: 12/02/2014] [Indexed: 11/07/2022]
Abstract
This study aimed to develop and evaluate resin-based experimental dental sealants containing electrospun nylon-6 (N6) and chitosan (CH) fibers in an attempt to improve the physicomechanical properties and provide an antibacterial protective effect, respectively. Electrospun N6 and CH mats were immersed into a resin mixture, light-cured, and then cryomilled to obtain micron-sized resin-modified fiber particles. Different levels of the novel cryomilled particles (i.e. 1, 2.5, and 5% relative to the resin mixture, % by weight) were used to prepare the N6- and CH-containing sealants. A commercial sealant and the experimental resin mixture (unfilled) were used as controls. Flexural strength (FS), Vickers microhardness (VH), and agar diffusion tests were performed. The data were analyzed at the 5% significance level. No significant difference in fiber diameter of N6 (503 ± 31 nm) and CH (595 ± 38 nm) was observed. Upon cryomilling, the resin-modified CH and N6 mats led to the formation of irregularly-shaped particles, with an average diameter of 14.24 µm and 15.87 µm, respectively. CH-5% had significantly higher FS (115.3 ± 1.3 MPa) than all the other groups. CH-1% had significantly higher hardness values (38.3 ± 0.3 VHN) than all the other groups. Collectively, the results indicated that CH-containing sealants presented the highest FS and hardness; however, none of the CH-containing sealants displayed antimicrobial properties.
Collapse
Affiliation(s)
- María F Hamilton
- Department of Restorative Dentistry, Graduate Operative and Preventive Dentistry, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana.,Department of Restorative Dentistry, Dental Biomaterials Division, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana
| | - Andrew D Otte
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, Indiana
| | - Richard L Gregory
- Department of Oral Biology, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, Indiana
| | - Andrea Ferreira-Zandoná
- Department of Operative Dentistry, University of North Carolina, Chapel Hill, North Carolina
| | - Marco C Bottino
- Department of Restorative Dentistry, Dental Biomaterials Division, Indiana University School of Dentistry (IUSD), Indianapolis, Indiana
| |
Collapse
|
5
|
Dyeing of Polyester and Polyamide Synthetic Fabrics with Natural Dyes Using Ecofriendly Technique. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/363079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work presents an ecofriendly method for dyeing synthetic fabrics with natural dyes using UV/ozone pretreatment to activate fiber and improve dyeability of polyester and nylon. Fabrics are pretreated with UV/ozone for different periods of time ranged from 5 min to 120 min. Effect of pretreatment on surface morphology was studied by scanning electron microscope (SEM). Mechanical behavior was studied by testing tensile strength and elongation percentage. Chemical modification of the surface was studied using attenuated total reflection Fourier transform infrared spectrometer (ATR-FTIR). Dyeability of the treated samples was investigated in terms of their colour strength expressed as K/s in addition to fastness to washing and light. This research showed the increment of the affinity of the studied synthetic fabrics towards curcumin and saffron natural dyes using ecofriendly technique.
Collapse
|
6
|
Chen S, Gao H, Chen J, Wu J. Surface modification of polyacrylonitrile fibre by nitrile hydratase from Corynebacterium nitrilophilus. Appl Biochem Biotechnol 2014; 174:2058-66. [PMID: 25163886 DOI: 10.1007/s12010-014-1186-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/15/2014] [Indexed: 11/24/2022]
Abstract
Previously, nitrile hydratase (NHase) from Corynebacterium nitrilophilus was obtained and showed potential in polyacrylonitrile (PAN) fibre modification. In the present study, the modification conditions of C. nitrilophilus NHase on PAN were investigated. In the optimal conditions, the wettability and dyeability (anionic and reactive dyes) of PAN treated by C. nitrilophilus NHase reached a similar level of those treated by alkali. In addition, the chemical composition and microscopically observable were changed in the PAN surface after NHase treatment. Meanwhile, it revealed that cutinase combined with NHase facilitates the PAN hydrolysis slightly because of the ester existed in PAN as co-monomer was hydrolyzed. All these results demonstrated that C. nitrilophilus NHase can modify PAN efficiently without textile structure damage, and this study provides a foundation for the further application of C. nitrilophilus NHase in PAN modification industry.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Ave., Wuxi, Jiangsu, 214122, China
| | | | | | | |
Collapse
|
7
|
Zhang Y, Wang L, Chen J, Wu J. Enhanced activity toward PET by site-directed mutagenesis of Thermobifida fusca cutinase–CBM fusion protein. Carbohydr Polym 2013; 97:124-9. [DOI: 10.1016/j.carbpol.2013.04.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/07/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022]
|
8
|
Nuhiji E, Wong CS, Sutti A, Lin T, Kirkland M, Wang X. Biofunctionalization of 3D nylon 6,6 scaffolds using a two-step surface modification. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2912-2919. [PMID: 22663066 DOI: 10.1021/am300087k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells. This study developed a versatile and simple two-step technique combining oxygen plasma treatment with wet silanization to graft biomolecules onto nylon 6,6 3D porous scaffolds. Scaffolds that were exposed to oxygen plasma exhibited up to 13-fold increase in silane attachment ((3-mercaptopropyl)trimethoxysilane/(3-aminopropyl)trimethoxysilane) compared to untreated scaffolds. To address the limitation of nondestructive characterization of the surface chemistry of 3D scaffolds, fluorescent CdSe/ZnS nanoparticles were used as a reporting tool for -NH2 functionalized surfaces. Scaffolds that were covalently bound with neutravidin protein remained stable in phosphate buffered saline up to four months. Functionality of the neutravidin-grafted scaffolds was demonstrated by the specific binding of CD4 cells to the scaffold via CD4-specific antibody. Ultimately, these neutravidin-functionalized 3D nylon scaffolds could be easily customized on demand utilizing a plethora of biotinylated biomolecules (antibodies, enzymes and proteins) to select for specific cell of interest. This technique can be extended to other applications, including the enhancement of cell-scaffold interactions.
Collapse
Affiliation(s)
- Edin Nuhiji
- Institute for Frontier Materials, Deakin University , Geelong, Victoria, Australia, 3217
| | | | | | | | | | | |
Collapse
|
9
|
Zhang Y, Chen S, Wu J, Chen J. Enzymatic surface modification of cellulose acetate fibre by cutinase-CBM (carbohydrate-binding module) fusion proteins. BIOCATAL BIOTRANSFOR 2011. [DOI: 10.3109/10242422.2011.638713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Silva C, Da S, Silva N, Matamá T, Araújo R, Martins M, Chen S, Chen J, Wu J, Casal M, Cavaco-Paulo A. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. Biotechnol J 2011; 6:1230-9. [DOI: 10.1002/biot.201000391] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 06/07/2011] [Accepted: 06/20/2011] [Indexed: 11/07/2022]
|