1
|
Cai Y, Tian T, Huang Y, Yao H, Qi X, Fan J, Kuang Y, Chen J, Li X, Kadokami K. Occurrence and Health Risks of Organic Micropollutants in Tap Water in Dalian. Chem Res Toxicol 2023; 36:1938-1946. [PMID: 38039423 DOI: 10.1021/acs.chemrestox.3c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Organic micropollutants (OMPs) in tap water may pose risks to human health. Previous studies on the potential health risks of OMPs in tap water may have underestimated the potential health risks of OMPs due to their limited coverage in target pollutants and incomplete toxicity data. In this study, tap water samples were collected in 37 sampling sites in Dalian, China. More than 1,200 target pollutants were screened by combining screening analysis and target analysis. A total of 93 OMPs were detected, with concentration summation ranging from 157 to 1.7 × 104 ng/L among different sampling sites. A total of 17 OMPs (12 agrochemicals, 3 pharmaceuticals and personal care products, and 2 other compounds) were detected in over 80% of the sampling sites. Especially, imidacloprid, tebuconazole, and atrazine-desethyl were found in all the sampling sites. Computational toxicology models were adopted to predict the missing toxicity threshold values of the identified chemicals. Noncarcinogenic risks were estimated to be negligible among all the sampling sites, while carcinogenic risks at six sites were above 10-6 but below 10-4, indicating non-negligible risks. Griseofulvin contributed the most to the carcinogenic risk. This study offers valuable insights that can guide future initiatives to safeguard tap water safety.
Collapse
Affiliation(s)
- Yuantian Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongye Yao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaojuan Qi
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jun Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yidan Kuang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, University of Kitakyushu, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
2
|
Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023; 11:2558. [PMID: 37894216 PMCID: PMC10609637 DOI: 10.3390/microorganisms11102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
S-triazines are a group of herbicides that are extensively applied to control broadleaf weeds and grasses in agricultural production. They are mainly taken up through plant roots and are transformed by xylem tissues throughout the plant system. They are highly persistent and have a long half-life in the environment. Due to imprudent use, their toxic residues have enormously increased in the last few years and are frequently detected in food commodities, which causes chronic diseases in humans and mammals. However, for the safety of the environment and the diversity of living organisms, the removal of s-triazine herbicides has received widespread attention. In this review, the degradation of s-triazine herbicides and their intermediates by indigenous microbial species, genes, enzymes, plants, and nanoparticles are systematically investigated. The hydrolytic degradation of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is further metabolized into ammonia and carbon dioxide. Microbial-free cells efficiently degrade s-triazine herbicides in laboratory as well as field trials. Additionally, the combinatorial approach of nanomaterials with indigenous microbes has vast potential and considered sustainable for removing toxic residues in the agroecosystem. Due to their smaller size and unique properties, they are equally distributed in sediments, soil, water bodies, and even small crevices. Finally, this paper highlights the implementation of bioinformatics and molecular tools, which provide a myriad of new methods to monitor the biodegradation of s-triazine herbicides and help to identify the diverse number of microbial communities that actively participate in the biodegradation process.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Environmental Sustainability & Health Institute (ESHI), City Campus, School of Food Science & Environmental Health, Technological University Dublin, Grangegorman Lower, D07 EWV4 Dublin, Ireland
- Key Laboratory of Integrated Pest Management of Crop in South China, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture and Rural Affairs, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Seoul 05006, Republic of Korea;
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
3
|
Khan MF, Hof C, Niemcová P, Murphy CD. Recent advances in fungal xenobiotic metabolism: enzymes and applications. World J Microbiol Biotechnol 2023; 39:296. [PMID: 37658215 PMCID: PMC10474215 DOI: 10.1007/s11274-023-03737-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fungi have been extensively studied for their capacity to biotransform a wide range of natural and xenobiotic compounds. This versatility is a reflection of the broad substrate specificity of fungal enzymes such as laccases, peroxidases and cytochromes P450, which are involved in these reactions. This review gives an account of recent advances in the understanding of fungal metabolism of drugs and pollutants such as dyes, agrochemicals and per- and poly-fluorinated alkyl substances (PFAS), and describes the key enzymes involved in xenobiotic biotransformation. The potential of fungi and their enzymes in the bioremediation of polluted environments and in the biocatalytic production of important compounds is also discussed.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carina Hof
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patricie Niemcová
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Wang S, Cheng F, Guo S. Highly efficient screening and optimal combination of functional isolates for bioremediation of hydrocarbon-polluted soil. ENVIRONMENTAL RESEARCH 2023; 219:115064. [PMID: 36549230 DOI: 10.1016/j.envres.2022.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The key to enhancing the efficacy of bioremediation of hydrocarbon-contaminated soil is the precise and highly efficient screening of functional isolates. Low screening effectiveness, narrow screening range and an unstable structure of the constructed microflora during bioremediation are the shortcomings of the traditional shaking culture (TSC) method. To improve the secondary screening of isolates and microflora implemented for alkane degradation, this work evaluated the characterization relationship between bacterial function and enzyme activity and devised an enzyme activity assay (EAA) method. The results indicated a substantial positive correlation (r = 0.97) between 24 candidate isolates and their whole enzymes, proving that whole enzyme activity properly reflects the metabolic functions of microorganisms. The functional analysis of the isolates demonstrated that the EAA method in conjunction with microbial abundance and metabolite determination could broaden the screening range of functional isolates, including aliphatic acid-metabolizing isolates (isolates H4 and H7) and aliphatic acid-sensitive isolates (isolate H2) with n-hexadecane degradation ability. The EAA method also guided the construction of functional microflora and optimized the mode of application using combinations of alkane-degrading bacteria and aliphatic acid-degrading bacteria successively (e.g., F1+H7+H7). The combinations maintained a high abundance of functional isolates and stable α diversity and community composition throughout the experiment, which contributed to more advanced alkane degradation and mineralization ability (p < 0.01). Assuming a workload of 100 tests, the screening efficiency of the EAA method is more than 16 times that of the TSC method, and the greater the quantity of isolates, the higher the screening efficiency, enabling high-throughput screening. In conclusion, the EAA method has a broad-spectrum, accurate and highly efficient screening ability for functional isolates and microflora, which can provide intensive technical support for the development of bioremediation materials and the application of bioremediation technology.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Fenglian Cheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
5
|
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules 2021; 26:3813. [PMID: 34206669 PMCID: PMC8270347 DOI: 10.3390/molecules26133813] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/07/2022] Open
Abstract
The history of colour is fascinating from a social and artistic viewpoint because it shows the way; use; and importance acquired. The use of colours date back to the Stone Age (the first news of cave paintings); colour has contributed to the social and symbolic development of civilizations. Colour has been associated with hierarchy; power and leadership in some of them. The advent of synthetic dyes has revolutionized the colour industry; and due to their low cost; their use has spread to different industrial sectors. Although the percentage of coloured wastewater discharged by the textile; food; pharmaceutical; cosmetic; and paper industries; among other productive areas; are unknown; the toxic effect and ecological implications of this discharged into water bodies are harmful. This review briefly shows the social and artistic history surrounding the discovery and use of natural and synthetic dyes. We summarise the environmental impact caused by the discharge of untreated or poorly treated coloured wastewater to water bodies; which has led to physical; chemical and biological treatments to reduce the colour units so as important physicochemical parameters. We also focus on laccase utility (EC 1.10.3.2), for discolouration enzymatic treatment of coloured wastewater, before its discharge into water bodies. Laccases (p-diphenol: oxidoreductase dioxide) are multicopper oxidoreductase enzymes widely distributed in plants, insects, bacteria, and fungi. Fungal laccases have employed for wastewater colour removal due to their high redox potential. This review includes an analysis of the stability of laccases, the factors that influence production at high scales to achieve discolouration of high volumes of contaminated wastewater, the biotechnological impact of laccases, and the degradation routes that some dyes may follow when using the laccase for colour removal.
Collapse
Affiliation(s)
- Leidy D. Ardila-Leal
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Aura M. Pedroza-Rodríguez
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Microbiología Ambiental y de Suelos, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| | - Balkys E. Quevedo-Hidalgo
- Grupo de Biotecnología Ambiental e Industrial (GBAI), Laboratorio de Biotecnología Aplicada, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá 110-23, DC, Colombia;
| |
Collapse
|
6
|
Lopes RDO, Pereira PM, Pereira ARB, Fernandes KV, Carvalho JF, França ADSD, Valente RH, da Silva M, Ferreira-Leitão VS. Atrazine, desethylatrazine (DEA) and desisopropylatrazine (DIA) degradation by Pleurotus ostreatus INCQS 40310. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1754805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Raquel de Oliveira Lopes
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Patrícia Maia Pereira
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Aline Ramalho Brandão Pereira
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Keysson Vieira Fernandes
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Julia Finamor Carvalho
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| | - Alexandre da Silva de França
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
| | - Richard Hemmi Valente
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Manuela da Silva
- Vice-Presidency of Research and Biological Collections, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Viridiana S. Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology (INT), Ministry of Science, Technology, Innovation and Communication (MCTIC), Rio de Janeiro, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro, Institute of Chemistry, Rio de Janeiro, Brazil
| |
Collapse
|