1
|
Mallon HE, Ramírez GA, Dolenšek T, Erles K, Martí-Garcia B, Priestnall SL, Suárez-Bonnet A. CD117 expression in canine ovarian tumours. J Comp Pathol 2024; 212:1-5. [PMID: 38878529 DOI: 10.1016/j.jcpa.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 05/16/2024] [Indexed: 07/26/2024]
Abstract
Canine ovarian cancer poses a significant diagnostic and therapeutic challenge. The heterogeneous nature of ovarian tumours makes accurate histological identification difficult, whilst treatment is limited to surgical excision. The tyrosine kinase receptor CD117 is neo-expressed in many tumours and represents a potential diagnostic and prognostic biomarker and therapeutic target. This study aimed to establish if CD117 is neoexpressed in canine ovarian tumours. Immunohistochemistry was employed to assess expression of CD117 in 29 canine ovarian tumour samples. CD117 labelling was assessed with a semiquantitative immunoreactivity score, and the location of labelling was recorded as membranous, focal cytoplasmic or diffuse cytoplasmic. Histological morphology was assessed and used to assign subgroups based on growth pattern. Cytokeratin 7 labelling was used to indicate the tumour type as epithelial or sex-cord stromal in origin. Mitotic index, percentage of necrosis and vascular invasion were also assessed and evaluated for association with CD117 expression. Overall, 81% of ovarian tumours neoexpressed CD117 and normal ovarian tissue did not express CD117. Positive immunolabelling was seen in a subset of cells in both ovarian carcinomas (n = 20) and ovarian granulosa cell tumours (n = 3). There was no association between CD117 expression and patient age, histological subtype, mitotic index, percentage of necrosis or vascular invasion. This is the largest study to identify the expression of CD117 in canine ovarian tumours, but further research is needed to elucidate its prognostic and therapeutic value.
Collapse
Affiliation(s)
- Hannah E Mallon
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK.
| | - Gustavo A Ramírez
- Departament de Ciència Animal, Universitat de Lleida, Av. de l'Alcalde Rovira Roure, 191, Lleida E-25198, Spain
| | - Tamara Dolenšek
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, Ljubljana 1000, Slovenia
| | - Kerstin Erles
- VPG Histology, 637 Gloucester Road, Horfield, Bristol BS7 0BJ, UK
| | - Bernat Martí-Garcia
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
2
|
Capellmann S, Sonntag R, Schüler H, Meurer SK, Gan L, Kauffmann M, Horn K, Königs-Werner H, Weiskirchen R, Liedtke C, Huber M. Transformation of primary murine peritoneal mast cells by constitutive KIT activation is accompanied by loss of Cdkn2a/Arf expression. Front Immunol 2023; 14:1154416. [PMID: 37063827 PMCID: PMC10097954 DOI: 10.3389/fimmu.2023.1154416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Mast cells (MCs) are immune cells of the myeloid lineage distributed in tissues throughout the body. Phenotypically, they are a heterogeneous group characterized by different protease repertoires stored in secretory granules and differential presence of receptors. To adequately address aspects of MC biology either primary MCs isolated from human or mouse tissue or different human MC lines, like HMC-1.1 and -1.2, or rodent MC lines like L138.8A or RBL-2H3 are frequently used. Nevertheless, cellular systems to study MC functions are very limited. We have generated a murine connective tissue-like MC line, termed PMC-306, derived from primary peritoneal MCs (PMCs), which spontaneously transformed. We analyzed PMC-306 cells regarding MC surface receptor expression, effector functions and respective signaling pathways, and found that the cells reacted very similar to primary wildtype (WT) PMCs. In this regard, stimulation with MAS-related G-protein-coupled receptor member B2 (MRGPRB2) ligands induced respective signaling and effector functions. Furthermore, PMC-306 cells revealed significantly accelerated cell cycle progression, which however was still dependent on interleukine 3 (IL-3) and stem cell factor (SCF). Phenotypically, PMC-306 cells adopted an immature connective tissue-like MCs appearance. The observation of cellular transformation was accompanied by the loss of Cdkn2a and Arf expression, which are both described as critical cell cycle regulators. The loss of Cdkn2a and Arf expression could be mimicked in primary bone marrow-derived mast cells (BMMCs) by sustained SCF supplementation strongly arguing for an involvement of KIT activation in the regulation of Cdkn2a/Arf expression. Hence, this new cell line might be a useful tool to study further aspects of PMC function and to address tumorigenic processes associated with MC leukemia.
Collapse
Affiliation(s)
- Sandro Capellmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- *Correspondence: Sandro Capellmann, ; Michael Huber,
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Herdit Schüler
- Institute of Human Genetics, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Steffen K. Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lin Gan
- Genomics Facility, Interdisciplinary Center for Clinical Research (IZKF), Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Marlies Kauffmann
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Katharina Horn
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Hiltrud Königs-Werner
- Electron Microscopy Facility, Institute of Pathology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Christian Liedtke
- Department of Internal Medicine III, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- *Correspondence: Sandro Capellmann, ; Michael Huber,
| |
Collapse
|
3
|
Nam Y, Kim C, Han J, Ryu S, Cho H, Song C, Kim ND, Kim N, Sim T. Identification of Thiazolo[5,4- b]pyridine Derivatives as c-KIT Inhibitors for Overcoming Imatinib Resistance. Cancers (Basel) 2022; 15:143. [PMID: 36612139 PMCID: PMC9817970 DOI: 10.3390/cancers15010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
c-KIT is a promising therapeutic target against gastrointestinal stromal tumor (GIST). In order to identify novel c-KIT inhibitors capable of overcoming imatinib resistance, we synthesized 31 novel thiazolo[5,4-b]pyridine derivatives and performed SAR studies. We observed that, among these substances, 6r is capable of inhibiting significantly c-KIT and suppressing substantially proliferation of GIST-T1 cancer cells. It is of note that 6r is potent against a c-KIT V560G/D816V double mutant resistant to imatinib. Compared with sunitinib, 6r possesses higher differential cytotoxicity on c-KIT D816V Ba/F3 cells relative to parental Ba/F3 cells. In addition, kinase panel profiling reveals that 6r has reasonable kinase selectivity. It was found that 6r remarkably attenuates proliferation of cancer cells via blockade of c-KIT downstream signaling, and induction of apoptosis and cell cycle arrest. Furthermore, 6r notably suppresses migration and invasion, as well as anchorage-independent growth of GIST-T1 cells. This study provides useful SAR information for the design of novel c-KIT inhibitors overcoming imatinib-resistance.
Collapse
Affiliation(s)
- Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chan Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junghee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
4
|
Castañeda-Partida L, Ocadiz-Delgado R, Sánchez-López JM, García-Villa E, Peñaloza-González JG, Velázquez-Aviña MM, Torres-Nava JR, Martín-Trejo JA, Solís-Labastida K, Guerra-Castillo FX, Bekker-Méndez VC, Rosales-García VH, Romero-Rodríguez D, Mojica-Espinoza R, Mendez-Tenorio A, Ramírez-Calzada CA, Álvarez-Ríos E, Mejía-Aranguré JM, Gariglio P. Global expression profiling of CD10 + /CD19 + pre-B lymphoblasts from Hispanic B-ALL patients correlates with comparative TARGET database analysis. Discov Oncol 2022; 13:28. [PMID: 35445848 PMCID: PMC9023642 DOI: 10.1007/s12672-022-00480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
Mexico City has one of the highest incidences of acute lymphoblastic leukemia (ALL) globally, with patients showing low survival, and high relapse rates. To gain more insight into the molecular features of B-ALL in Mexican children, we isolated CD10 + /CD19 + precursor B lymphoblasts from four bone marrow and nine peripheral blood samples of B-ALL patients using a fluorescence-activated cell sorting protocol. The global gene expression profile (BM vs PB) revealed 136 differentially expressed genes; 62 were upregulated (45.6%) and 74 were downregulated (54.4%). Pearson's correlation coefficient was calculated to determine the similarity between pre-B lymphoblast populations. We selected 26 highly significant genes and validated 21 by RT-qPCR (CNN3, STON2, CALN1, RUNX2, GADD45A, CDC45, CDC20, PLK1, AIDA, HCK, LY86, GPR65, PIK3CG, LILRB2, IL7R, TCL1A, DOCK1, HIST1H3G, PTPN14, CD72, and NT5E). The gene set enrichment analysis of the total expression matrix and the ingenuity pathway analysis of the 136 differentially expressed genes showed that the cell cycle was altered in the bone marrow with four overexpressed genes (PLK1, CDC20, CDC45, and GADD45A) and a low expression of IL7R and PIK3CG, which are involved in B cell differentiation. A comparative bioinformatics analysis of 15 bone marrow and 10 peripheral blood samples from Hispanic B-ALL patients collected by the TARGET program, corroborated the genes observed, except for PIK3CG. We conclude the Mexican and the Hispanic B-ALL patients studied present common driver alterations and histotype-specific mutations that could facilitate risk stratification and diagnostic accuracy and serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Laura Castañeda-Partida
- Laboratorio de Genética Toxicológica, Biología. Facultad de Estudios Profesionales Iztacala (FESI), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Estado de México, Mexico
| | - Rodolfo Ocadiz-Delgado
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular. Centro de Investigación y de Estudios Avanzados (Cinvestav), Ciudad de México, Mexico
| | | | - Enrique García-Villa
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular. Centro de Investigación y de Estudios Avanzados (Cinvestav), Ciudad de México, Mexico
| | | | | | | | - Jorge Alfonso Martín-Trejo
- Servicio de Hematología, Hospital de Pediatría. Centro Médico Nacional (CMN), "Siglo XXI" , Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Karina Solís-Labastida
- Servicio de Hematología, Hospital de Pediatría. Centro Médico Nacional (CMN), "Siglo XXI" , Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Xavier Guerra-Castillo
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología ''Dr. Daniel Mendez Hernández'', ''La Raza'', IMSS, Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología ''Dr. Daniel Mendez Hernández'', ''La Raza'', IMSS, Mexico City, Mexico
| | - Víctor Hugo Rosales-García
- Laboratorio de Citometría de Flujo, Laboratorios Nacionales de Servicios Experimentales, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| | - Dámaris Romero-Rodríguez
- Unidad de Citometría, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City, Mexico
| | - Raúl Mojica-Espinoza
- Unidad de Genotipificación y Análisis de Expresión, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio Biotecnología y Bioinformática Genómica, Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. MX, Mexico City, Mexico
| | - Crystel A Ramírez-Calzada
- Laboratorio Biotecnología y Bioinformática Genómica, Departamento de Bioquímica. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. MX, Mexico City, Mexico
| | - Elízabeth Álvarez-Ríos
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular. Centro de Investigación y de Estudios Avanzados (Cinvestav), Ciudad de México, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, UMAE Hospital de Pediatría. Centro Medico Nacional (CMN) ''Siglo XXI'', Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Patricio Gariglio
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular. Centro de Investigación y de Estudios Avanzados (Cinvestav), Ciudad de México, Mexico.
| |
Collapse
|
5
|
Liu K, Wu Z, Chu J, Yang L, Wang N. Promoter methylation and expression of SOCS3 affect the clinical outcome of pediatric acute lymphoblastic leukemia by JAK/STAT pathway. Biomed Pharmacother 2019; 115:108913. [PMID: 31054507 DOI: 10.1016/j.biopha.2019.108913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) has been characterized as one of the most crucial negative regulator in the JAK2/STAT3 signaling pathway. However, there are few studies on the relationship between SOCS3 and pediatric acute lymphoblastic leukemia (ALL). This study analyzes the influence of SOCS3 expression on the risk and the progression of pediatric ALL and the underlying mechanism. The levels of SOCS3, p-JAK2, p-STAT3, SOCS3 methylation, CD4+CD25+CD127lowTreg were detected by PCR, laser confocal microscopy, western blot, bisulfite sequencing and flow cytometry at different progression of ALL. We found that the SOCS3 expression level at initial diagnosis (DG) of ALL patients was significantly lower than that of healthy controls (HC), while the expression of SOCS3 methylation was opposite. The expression of SOCS3 and SOCS3 methylation were returned to normal in the complete remission (CR) stage, and there were no difference between resistance, relapse and initial diagnosis. The expression of SOCS3 decreased and weakened the inhibition of pSTAT3 expression in DG, resistance and relapse groups. The levels of Treg cells in ALL children were significantly higher than those in the HC children. There was a positive correlation between the expression level of STAT3 and the expression level of Treg cells in children with ALL, while that was negatively correlated with the expression levels of Treg cells. Compared with high-level of SOCS3, the low-level of SOCS3 patients had more high risk factors, as higher WBC counts, LDH level and much more poor prognostic genes. SOCS3 methylation leads to low-expression of SOCS3, which can lead to continuous activation of JAK/STAT3 and increased expression of Treg cells, which in turn affects the anti-tumor immunological effect of the body. Taken together, our data show that monitoring the level of SOCS3 can contribute to the understanding of the state of illness and evaluate the risk of progression of ALL.
Collapse
Affiliation(s)
- Kangkang Liu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhengyu Wu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinhua Chu
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Linhai Yang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ningling Wang
- Pediatrics, the Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
6
|
Brattås MK, Reikvam H, Tvedt THA, Bruserud Ø. Dasatinib as an investigational drug for the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults. Expert Opin Investig Drugs 2019; 28:411-420. [PMID: 30916583 DOI: 10.1080/13543784.2019.1597052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) with BCR-ABL1 translocation is an aggressive malignancy that is usually treated with intensive chemotherapy with the possibility of allogeneic stem cell transplantation. The encoded fusion protein may be important for leukemogenesis; clinical studies show that dasatinib has an antileukemic effect in combination with steroids alone or intensive chemotherapy. Areas covered: Relevant publications were identified through literature searches (the used terms being acute lymphoblastic leukemia plus dasatinib) in the PubMed database. We searched for original articles and reviews describing the pharmacology and clinical use of dasatinib in ALL with BCR-ABL1. The mechanism of action, pharmacology and clinical study findings are examined. Expert opinion: Dasatinib is associated with a high complete remission rate in ALL when used alone and in combination with steroids or intensive chemotherapy. However, mutations at T315 and F317 are associated with dasatinib resistance. Overall toxicity has been acceptable in these studies and no unexpected toxicity was observed. It is not known whether the antileukemic effect of dasatinib differs between subsets of BCR-ABL1+ patients or is attributed to inhibition of the fusion protein alone, or a combined effect on several kinases, and whether dasatinib-containing combination treatment should be preferred in these patients instead of other emerging strategies, e.g. monoclonal antibodies.
Collapse
Affiliation(s)
- Marte Karen Brattås
- a Department of Medicine , Haraldsplass Deaconess Hospital , Bergen , Norway
| | - Håkon Reikvam
- b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | | | - Øystein Bruserud
- b Department of Medicine , Haukeland University Hospital , Bergen , Norway.,c Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| |
Collapse
|
7
|
Vakhrushev IV, Novikova SE, Tsvetkova AV, Karalkin PA, Pyatnitskii MA, Zgoda VG, Yarygin KN. Proteomic Profiling of HL-60 Cells during ATRA-Induced Differentiation. Bull Exp Biol Med 2018; 165:530-543. [PMID: 30121918 PMCID: PMC7087771 DOI: 10.1007/s10517-018-4210-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 11/29/2022]
Abstract
Acute promyelocytic leukemia, a form of acute myeloid leukemia, is characterized by cell differentiation arrest at the promyelocyte stage. Current therapeutic options include administration of all trans-retinoic acid (ATRA), but this treatment produces many side effects. ATRA is known to induce differentiation of leukemic cells into granulocytes, but the mechanism of this process is poorly studied. We performed comparative proteomic profiling of HL-60 promyelocytic cells at different stages of ATRA-induced differentiation to identify differentially expressed proteins by high-resolution mass spectrometry and relative quantitative analysis without isotope labels. A total of 1162 proteins identified by at least two unique peptides were analyzed, among them 46 and 172 differentially expressed proteins were identified in the nuclear and cytosol fractions, respectively. These differentially expressed proteins can represent candidate targets for combination therapy of acute promyelocytic leukemia.
Collapse
Affiliation(s)
- I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - S E Novikova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Tsvetkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - P A Karalkin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - M A Pyatnitskii
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V G Zgoda
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|