1
|
Mondal A, Baker B, Harvey IR, Moreno AP. PerFlexMEA: a thin microporous microelectrode array for in vitro cardiac electrophysiological studies on hetero-cellular bilayers with controlled gap junction communication. LAB ON A CHIP 2015; 15:2037-2048. [PMID: 25797476 DOI: 10.1039/c4lc01212g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The new microelectrode array device presented is called PerFlexMEA and it enables controlled coupling between myocytes and nonmyocytes used in cardiovascular conduction studies. The device consists of an 8 μm thin parylene microporous membrane with a 4 × 5 microelectrode array patterned on one side. Myocytes and nonmyocytes can be plated on either side of the parylene membrane to create a tissue bilayer. The 3-3.5 μm diameter pores allow inter-layer dye and electrical coupling without transmembrane cell migration. Cell migration was found to vary with cell-type and micropore diameter. Pore density can be varied based on desired coupling ratio. The flexible parylene membrane is packaged between two rigid thermoplastic layers, such that the microelectrode array region is exposed, while the rest of the device remains insulated. The packaged PerFlexMEA fits in a 60 mm culture dish. Recording experiments are performed by simply plugging it into a commercially available multielectrode amplifier system. Recorded signals were processed and analysed using scripts generated in MATLAB. Our experimental results provide evidence of the reliability of this device, as conduction velocity was observed to decrease after inducing lateral hetero-cellular controlled coupling between myocytes and HeLa cells expressing connexin 43.
Collapse
Affiliation(s)
- A Mondal
- Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA.
| | | | | | | |
Collapse
|
2
|
Wong J, Göktepe S, Kuhl E. Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:1104-33. [PMID: 23798328 PMCID: PMC4567385 DOI: 10.1002/cnm.2565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 02/07/2013] [Accepted: 04/12/2013] [Indexed: 05/05/2023]
Abstract
Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here, we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, whereas the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of 4 days on a standard desktop computer.
Collapse
Affiliation(s)
- J Wong
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, U.S.A
| | | | | |
Collapse
|
3
|
Modeling electrical power absorption and thermally-induced biological tissue damage. Biomech Model Mechanobiol 2013; 13:115-21. [PMID: 23589115 DOI: 10.1007/s10237-013-0489-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.
Collapse
|
4
|
Dal H, Göktepe S, Kaliske M, Kuhl E. A fully implicit finite element method for bidomain models of cardiac electromechanics. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2013; 253:323-336. [PMID: 23175588 PMCID: PMC3501134 DOI: 10.1016/j.cma.2012.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes.
Collapse
Affiliation(s)
- Hüsnü Dal
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
- Institut für Mechanik, (Bauwesen), Lehrstuhl I, Universität Stuttgart, Germany
| | - Serdar Göktepe
- Department of Civil Engineering, Middle East Technical University, Ankara, Turkey
| | - Michael Kaliske
- Institute for Structural Analysis, Technische Universität Dresden, Dresden, Germany
| | - Ellen Kuhl
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| |
Collapse
|
5
|
Wong J, Kuhl E. Generating fibre orientation maps in human heart models using Poisson interpolation. Comput Methods Biomech Biomed Engin 2012; 17:1217-26. [PMID: 23210529 DOI: 10.1080/10255842.2012.739167] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Smoothly varying muscle fibre orientations in the heart are critical to its electrical and mechanical function. From detailed histological studies and diffusion tensor imaging, we now know that fibre orientations in humans vary gradually from approximately -70° in the outer wall to +80° in the inner wall. However, the creation of fibre orientation maps for computational analyses remains one of the most challenging problems in cardiac electrophysiology and cardiac mechanics. Here, we show that Poisson interpolation generates smoothly varying vector fields that satisfy a set of user-defined constraints in arbitrary domains. Specifically, we enforce the Poisson interpolation in the weak sense using a standard linear finite element algorithm for scalar-valued second-order boundary value problems and introduce the feature to be interpolated as a global unknown. User-defined constraints are then simply enforced in the strong sense as Dirichlet boundary conditions. We demonstrate that the proposed concept is capable of generating smoothly varying fibre orientations, quickly, efficiently and robustly, both in a generic bi-ventricular model and in a patient-specific human heart. Sensitivity analyses demonstrate that the underlying algorithm is conceptually able to handle both arbitrarily and uniformly distributed user-defined constraints; however, the quality of the interpolation is best for uniformly distributed constraints. We anticipate our algorithm to be immediately transformative to experimental and clinical settings, in which it will allow us to quickly and reliably create smooth interpolations of arbitrary fields from data-sets, which are sparse but uniformly distributed.
Collapse
Affiliation(s)
- Jonathan Wong
- a Department of Mechanical Engineering , Stanford University , Stanford , CA 94305 , USA
| | | |
Collapse
|
6
|
Hurtado DE, Kuhl E. Computational modelling of electrocardiograms: repolarisation and T-wave polarity in the human heart. Comput Methods Biomech Biomed Engin 2012; 17:986-96. [PMID: 23113842 PMCID: PMC3574176 DOI: 10.1080/10255842.2012.729582] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For more than a century, electrophysiologists, cardiologists and engineers have studied the electrical activity of the human heart to better understand rhythm disorders and possible treatment options. Although the depolarisation sequence of the heart is relatively well characterised, the repolarisation sequence remains a subject of great controversy. Here, we study regional and temporal variations in both depolarisation and repolarisation using a finite element approach. We discretise the governing equations in time using an unconditionally stable implicit Euler backward scheme and in space using a consistently linearised Newton-Raphson-based finite element solver. Through systematic parameter-sensitivity studies, we establish a direct relation between a normal positive T-wave and the non-uniform distribution of the controlling parameter, which we have termed refractoriness. To establish a healthy baseline model, we calibrate the refractoriness using clinically measured action potential durations at different locations in the human heart. We demonstrate the potential of our model by comparing the computationally predicted and clinically measured depolarisation and repolarisation profiles across the left ventricle. The proposed framework allows us to explore how local action potential durations on the microscopic scale translate into global repolarisation sequences on the macroscopic scale. We anticipate that our calibrated human heart model can be widely used to explore cardiac excitation in health and disease. For example, our model can serve to identify optimal pacing sites in patients with heart failure and to localise optimal ablation sites in patients with cardiac fibrillation.
Collapse
Affiliation(s)
- Daniel E. Hurtado
- Department of Structural and Geotechnical Engineering and Biomedical Engineering Group, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ellen Kuhl
- Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Wong J, Abilez OJ, Kuhl E. Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2012; 60:1158-1178. [PMID: 22773861 PMCID: PMC3388516 DOI: 10.1016/j.jmps.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA,
| | - Oscar J. Abilez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA,
| | - Ellen Kuhl
- Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Abilez O, Wong J, Prakash R, Deisseroth K, Zarins C, Kuhl E. Multiscale computational models for optogenetic control of cardiac function. Biophys J 2011; 101:1326-34. [PMID: 21943413 PMCID: PMC3177076 DOI: 10.1016/j.bpj.2011.08.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/23/2022] Open
Abstract
The ability to stimulate mammalian cells with light has significantly changed our understanding of electrically excitable tissues in health and disease, paving the way toward various novel therapeutic applications. Here, we demonstrate the potential of optogenetic control in cardiac cells using a hybrid experimental/computational technique. Experimentally, we introduced channelrhodopsin-2 into undifferentiated human embryonic stem cells via a lentiviral vector, and sorted and expanded the genetically engineered cells. Via directed differentiation, we created channelrhodopsin-expressing cardiomyocytes, which we subjected to optical stimulation. To quantify the impact of photostimulation, we assessed electrical, biochemical, and mechanical signals using patch-clamping, multielectrode array recordings, and video microscopy. Computationally, we introduced channelrhodopsin-2 into a classic autorhythmic cardiac cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, the channel opens and allows sodium ions to enter the cell, inducing a fast upstroke of the transmembrane potential. We calibrated the channelrhodopsin-expressing cell model using single action potential readings for different photostimulation amplitudes, pulse widths, and frequencies. To illustrate the potential of the proposed approach, we virtually injected channelrhodopsin-expressing cells into different locations of a human heart, and explored its activation sequences upon optical stimulation. Our experimentally calibrated computational toolbox allows us to virtually probe landscapes of process parameters, and identify optimal photostimulation sequences toward pacing hearts with light.
Collapse
Affiliation(s)
- Oscar J. Abilez
- Department of Bioengineering, Stanford University, Stanford, California
- Department of Surgery, Stanford University, Stanford, California
| | - Jonathan Wong
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Rohit Prakash
- Department of Bioengineering, Stanford University, Stanford, California
- Department of Neurosciences, Stanford University, Stanford, California
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | | | - Ellen Kuhl
- Department of Bioengineering, Stanford University, Stanford, California
- Department of Mechanical Engineering, Stanford University, Stanford, California
| |
Collapse
|