Amiri P, Bull AMJ. Prediction of
in vivo hip contact forces during common activities of daily living using a segment-based musculoskeletal model.
Front Bioeng Biotechnol 2022;
10:995279. [PMID:
36588939 PMCID:
PMC9797521 DOI:
10.3389/fbioe.2022.995279]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Quantifying in vivo hip muscle and contact forces during activities of daily living (ADL) provides valuable information for diagnosis and treatment of hip-related disorders. The objective of this study was to utilize Freebody, a segment-based musculoskeletal model, for the prediction of hip contact forces using a novel objective function during seven common ADLs and validate its performance against the publicly available HIP98 dataset. Methods: Marker data, ground reaction forces, and hip contact forces during slow, normal, and fast walking, stair ascent and descent, and standing up and sitting down were extracted for 3 subjects from the HIP98 dataset. A musculoskeletal anatomical dataset was scaled to match the dimensions of each subject, and muscle and hip contact forces were estimated by minimizing a novel objective function, which was the summation of the muscle stresses squared and body weight-normalised hip contact force. The accuracy of predictions were quantified using several metrics, and muscle forces were qualitatively compared to experimental EMGs in the literature. Results: FreeBody predicted the hip contact forces during the ADLs with encouraging accuracy: The root mean squared error of predictions were 44.0 ± 8.5, 47.4 ± 6.5, and 59.8 ± 7.1% BW during slow, normal, and fast walking, 44.2 ± 16.8% and 53.3 ± 12.2% BW for stair ascent and descent, and 31.8 ± 8.2% and 17.1 ± 5.0% BW for standing up and sitting down, respectively. The error in prediction of peak hip contact forces were 14-18%, 24-28%, 17-35% for slow, normal, and fast walking, 7-25% and 15-32% in stair ascent and descent, and around 10% for standing up and sitting down. The coefficient of determination was larger than 0.90 in all activities except in standing up (0.86 ± 0.08). Conclusion: This study has implemented a novel objective function in a segment-based musculoskeletal model, FreeBody, for the prediction of hip contact forces during a large range of ADLs. The model outputs compare favourably for all ADLs and are the best in standing up and sitting down, while muscle activation patterns are consistent with experimental EMGs from literature. This new objective function addresses one of the major limitations associated with musculoskeletal models in the literature, namely the high non-physiological predicted hip joint contact forces.
Collapse