1
|
Morany A, Lavon K, Gomez Bardon R, Kovarovic B, Hamdan A, Bluestein D, Haj-Ali R. Fluid-structure interaction modeling of compliant aortic valves using the lattice Boltzmann CFD and FEM methods. Biomech Model Mechanobiol 2023; 22:837-850. [PMID: 36763197 DOI: 10.1007/s10237-022-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023]
Abstract
The lattice Boltzmann method (LBM) has been increasingly used as a stand-alone CFD solver in various biomechanical applications. This study proposes a new fluid-structure interaction (FSI) co-modeling framework for the hemodynamic-structural analysis of compliant aortic valves. Toward that goal, two commercial software packages are integrated using the lattice Boltzmann (LBM) and finite element (FE) methods. The suitability of the LBM-FE hemodynamic FSI is examined in modeling healthy tricuspid and bicuspid aortic valves (TAV and BAV), respectively. In addition, a multi-scale structural approach that has been employed explicitly recognizes the heterogeneous leaflet tissues and differentiates between the collagen fiber network (CFN) embedded within the elastin matrix of the leaflets. The CFN multi-scale tissue model is inspired by monitoring the distribution of the collagen in 15 porcine leaflets. Different simulations have been examined, and structural stresses and resulting hemodynamics are analyzed. We found that LBM-FE FSI approach can produce good predictions for the flow and structural behaviors of TAV and BAV and correlates well with those reported in the literature. The multi-scale heterogeneous CFN tissue structural model enhances our understanding of the mechanical roles of the CFN and the elastin matrix behaviors. The importance of LBM-FE FSI also emerges in its ability to resolve local hemodynamic and structural behaviors. In particular, the diastolic fluctuating velocity phenomenon near the leaflets is explicitly predicted, providing vital information on the flow transient nature. The full closure of the contacting leaflets in BAV is also demonstrated. Accordingly, good structural kinematics and deformations are captured for the entire cardiac cycle.
Collapse
Affiliation(s)
- Adi Morany
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Karin Lavon
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Rami Haj-Ali
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel. .,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Karnibad M, Sharabi M, Lavon K, Morany A, Hamdan A, Haj-Ali R. The effect of the fibrocalcific pathological process on aortic valve stenosis in female patients: a finite element study. Biomed Phys Eng Express 2022; 8. [PMID: 35120335 DOI: 10.1088/2057-1976/ac5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valvular disease in the developed world. Most of the relevant research has been sex-blind, ignoring sex-related biological variables and thus under-appreciate sex differences. However, females present pronounced fibrosis for the same aortic stenosis (AS) severity compared with males, who exhibit more calcification. Herein, we present a computational model of fibrocalcific AV, aiming to investigate its effect on AS development. A parametric study was conducted to explore the influence of the total collagen fiber volume and its architecture on the aortic valve area (AVA). Towards that goal, computational models were generated for three females with stenotic AVs and different volumes of calcium. We have tested the influence of fibrosis on various parameters as fiber architecture, fibrosis location, and transvalvular pressure. We found that increased fiber volume with a low calcium volume could actively contribute to AS and reduce the AVA similarly to high calcium volume. Thus, the computed AVAs for our fibrocalcific models were 0.94 and 0.84 cm2and the clinical (Echo) AVAs were 0.82 and 0.8 cm2. For the heavily calcified model, the computed AVA was 0.8 cm2and the clinical AVA was 0.73 cm2. The proposed models demonstrated how collagen thickening influence the fibrocalcific-AS process in female patients. These models can assist in the clinical decision-making process and treatment development in valve therapy for female patients.
Collapse
Affiliation(s)
- Maya Karnibad
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Mirit Sharabi
- Ariel University, Department of Mechanical engineering and Mechatronics, Ariel, 407000, ISRAEL
| | - Karin Lavon
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Adi Morany
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Ashraf Hamdan
- Tel Aviv University, Department of Cardiology, Rabin Medical Center, Tel Aviv, 69978, ISRAEL
| | - Rami Haj-Ali
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| |
Collapse
|
3
|
Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations. Ann Biomed Eng 2021; 49:3310-3322. [PMID: 34708308 DOI: 10.1007/s10439-021-02877-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart disease. Calcific aortic valve disease (CAVD) accounts for the majority of aortic stenosis (AS) cases. Half of the patients diagnosed with AS have a BAV, which has an accelerated progression rate. This study aims to develop a computational modeling approach of both the calcification progression in BAV, and its biomechanical response incorporating fluid-structure interaction (FSI) simulations during the disease progression. The calcification is patient-specifically reconstructed from Micro-CT images of excised calcified BAV leaflets, and processed with a novel reverse calcification technique that predicts prior states of CAVD using a density-based criterion, resulting in a multilayered calcified structure. Four progressive multilayered calcified BAV models were generated: healthy, mild, moderate, and severe, and were modeled by FSI simulations during the full cardiac cycle. A valve apparatus model, composed of the excised calcified BAV leaflets, was tested in an in-vitro pulse duplicator, to validate the severe model. The healthy model was validated against echocardiography scans. Progressive AS was characterized by higher systolic jet flow velocities (2.08, 2.3, 3.37, and 3.85 m s-1), which induced intense vortices surrounding the jet, coupled with irregular recirculation backflow patterns that elevated viscous shear stresses on the leaflets. This study shed light on the fluid-structure mechanism that drives CAVD progression in BAV patients.
Collapse
|
4
|
Wu MCH, Muchowski HM, Johnson EL, Rajanna MR, Hsu MC. Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2019; 357:112556. [PMID: 32831419 PMCID: PMC7442159 DOI: 10.1016/j.cma.2019.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The transcatheter aortic valve replacement (TAVR) has emerged as a minimally invasive alternative to surgical treatments of valvular heart disease. TAVR offers many advantages, however, the safe anchoring of the transcatheter heart valve (THV) in the patients anatomy is key to a successful procedure. In this paper, we develop and apply a novel immersogeometric fluid-structure interaction (FSI) framework for the modeling and simulation of the TAVR procedure to study the anchoring ability of the THV. To account for physiological realism, methods are proposed to model and couple the main components of the system, including the arterial wall, blood flow, valve leaflets, skirt, and frame. The THV is first crimped and deployed into an idealized ascending aorta. During the FSI simulation, the radial outward force and friction force between the aortic wall and the THV frame are examined over the entire cardiac cycle. The ratio between these two forces is computed and compared with the experimentally estimated coefficient of friction to study the likelihood of valve migration.
Collapse
Affiliation(s)
- Michael C. H. Wu
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Heather M. Muchowski
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
- Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, Iowa 50011, USA
| | - Emily L. Johnson
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Manoj R. Rajanna
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, Ames, Iowa 50011, USA
| |
Collapse
|
5
|
Lavon K, Halevi R, Marom G, Ben Zekry S, Hamdan A, Joachim Schäfers H, Raanani E, Haj-Ali R. Fluid-Structure Interaction Models of Bicuspid Aortic Valves: The Effects of Nonfused Cusp Angles. J Biomech Eng 2019; 140:2661744. [PMID: 29098290 DOI: 10.1115/1.4038329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Indexed: 12/21/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common type of congenital heart disease, occurring in 0.5-2% of the population, where the valve has only two rather than the three normal cusps. Valvular pathologies, such as aortic regurgitation and aortic stenosis, are associated with BAVs, thereby increasing the need for a better understanding of BAV kinematics and geometrical characteristics. The aim of this study is to investigate the influence of the nonfused cusp (NFC) angle in BAV type-1 configuration on the valve's structural and hemodynamic performance. Toward that goal, a parametric fluid-structure interaction (FSI) modeling approach of BAVs is presented. Four FSI models were generated with varying NFC angles between 120 deg and 180 deg. The FSI simulations were based on fully coupled structural and fluid dynamic solvers and corresponded to physiologic values, including the anisotropic hyper-elastic behavior of the tissue. The simulated angles led to different mechanical behavior, such as eccentric jet flow direction with a wider opening shape that was found for the smaller NFC angles, while a narrower opening orifice followed by increased jet flow velocity was observed for the larger NFC angles. Smaller NFC angles led to higher concentrated flow shear stress (FSS) on the NFC during peak systole, while higher maximal principal stresses were found in the raphe region during diastole. The proposed biomechanical models could explain the early failure of BAVs with decreased NFC angles, and suggests that a larger NFC angle is preferable in suture annuloplasty BAV repair surgery.
Collapse
Affiliation(s)
- Karin Lavon
- Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rotem Halevi
- Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Marom
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794
| | - Sagit Ben Zekry
- Echocardiography Laboratory, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Hans Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, University Hospitals of Saarland, Homburg 66421, Germany
| | - Ehud Raanani
- Department of Cardio-thoracic Surgery, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Evaluation of transcatheter heart valve biomaterials: Computational modeling using bovine and porcine pericardium. J Mech Behav Biomed Mater 2019; 97:159-170. [PMID: 31125889 DOI: 10.1016/j.jmbbm.2019.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The durability of bioprosthetic heart valve (BHV) devices, commonly made of bovine (BP) and porcine (PP) pericardium tissue, is partly limited by device calcification and tissue degeneration, which has been associated with pathological levels of mechanical stress. This study investigated the impacts of BP and PP tissues with different thicknesses and tissue mechanical properties in BHV applications. METHODS Second Harmonic Generation (SHG) imaging was employed to visualize the collagen fibers on each side of the pericardium. Structural constitutive modeling that incorporates collagen fiber distribution obtained from multiphoton microscopy for each tissue type were derived to characterize the corresponding biaxial mechanical testing data collected in a previous study. The models were verified through finite element (FE) simulations of the biaxial test and implemented in valve closing simulations. RESULTS Smooth side collagen fibers were found to correlate with the mechanical response. BHVs with adult (ABP) and calf (CBP) BP tissues had lower maximum principal stresses than those with PP and fetal (FBP) BP tissues. Collagen fiber orientation along the circumferential axis resulted in lower maximum principal stresses and more uniform and symmetric stress distributions throughout the valve. CONCLUSIONS The use of PP and FBP tissue resulted in higher peak stresses than ABP and CBP tissues in the given valve design. Additionally, ensuring collagen fiber orientation along the circumferential axis led to lower maximum stresses felt by the valve leaflets, which could also improve BHV durability.
Collapse
|
7
|
Halevi R, Hamdan A, Marom G, Lavon K, Ben-Zekry S, Raanani E, Haj-Ali R. A New Growth Model for Aortic Valve Calcification. J Biomech Eng 2018; 140:2682794. [DOI: 10.1115/1.4040338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 11/08/2022]
Abstract
Calcific aortic valve disease (CAVD) is a progressive disease in which minerals accumulate in the tissue of the aortic valve cusps, stiffening them and preventing valve opening and closing. The process of valve calcification was found to be similar to that of bone formation including cell differentiation to osteoblast-like cells. Studies have shown the contribution of high strains to calcification initiation and growth process acceleration. In this paper, a new strain-based calcification growth model is proposed. The model aims to explain the unique shape of the calcification and other disease characteristics. The calcification process was divided into two stages: Calcification initiation and calcification growth. The initiation locations were based on previously published findings and a reverse calcification technique (RCT), which uses computed tomography (CT) scans of patients to reveal the calcification initiation point. The calcification growth process was simulated by a finite element model of one aortic valve cusp loaded with cyclic loading. Similar to Wolff's law, describing bone response to stress, our model uses strains to drive calcification formation. The simulation grows calcification from its initiation point to its full typical stenotic shape. Study results showed that the model was able to reproduce the typical calcification growth pattern and shape, suggesting that strain is the main driving force behind calcification progression. The simulation also sheds light on other disease characteristics, such as calcification growth acceleration as the disease progresses, as well as sensitivity to hypertension.
Collapse
Affiliation(s)
- Rotem Halevi
- School of Mechanical Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ashraf Hamdan
- Department of Cardiology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Gil Marom
- School of Mechanical Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Karin Lavon
- School of Mechanical Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Sagit Ben-Zekry
- Echocardiography Laboratory, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Ehud Raanani
- Cardiothoracic Surgery Department, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, The Nathan Cummings Chair in Mechanics, The Fleischman Faculty of Engineering, Tel-Aviv University, Tel Aviv 69978, Israel e-mail:
| |
Collapse
|
8
|
Straka F, Schornik D, Masin J, Filova E, Mirejovsky T, Burdikova Z, Svindrych Z, Chlup H, Horny L, Daniel M, Machac J, Skibová J, Pirk J, Bacakova L. A human pericardium biopolymeric scaffold for autologous heart valve tissue engineering: cellular and extracellular matrix structure and biomechanical properties in comparison with a normal aortic heart valve. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:599-634. [PMID: 29338582 DOI: 10.1080/09205063.2018.1429732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of our study was to compare the cellular and extracellular matrix (ECM) structure and the biomechanical properties of human pericardium (HP) with the normal human aortic heart valve (NAV). HP tissues (from 12 patients) and NAV samples (from 5 patients) were harvested during heart surgery. The main cells in HP were pericardial interstitial cells, which are fibroblast-like cells of mesenchymal origin similar to the valvular interstitial cells in NAV tissue. The ECM of HP had a statistically significantly (p < 0.001) higher collagen I content, a lower collagen III and elastin content, and a similar glycosaminoglycans (GAGs) content, in comparison with the NAV, as measured by ECM integrated density. However, the relative thickness of the main load-bearing structures of the two tissues, the dense part of fibrous HP (49 ± 2%) and the lamina fibrosa of NAV (47 ± 4%), was similar. In both tissues, the secant elastic modulus (Es) was significantly lower in the transversal direction (p < 0.05) than in the longitudinal direction. This proved that both tissues were anisotropic. No statistically significant differences in UTS (ultimate tensile strength) values and in calculated bending stiffness values in the longitudinal or transversal direction were found between HP and NAV. Our study confirms that HP has an advantageous ECM biopolymeric structure and has the biomechanical properties required for a tissue from which an autologous heart valve replacement may be constructed.
Collapse
Affiliation(s)
- Frantisek Straka
- a Cardiology Centre and Cardiovascular Surgery Department , Institute for Clinical and Experimental Medicine , Prague , Czech Republic.,b Department of Biomaterials and Tissue Engineering , Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - David Schornik
- b Department of Biomaterials and Tissue Engineering , Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Jaroslav Masin
- a Cardiology Centre and Cardiovascular Surgery Department , Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Elena Filova
- b Department of Biomaterials and Tissue Engineering , Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Tomas Mirejovsky
- c Clinical and Transplant Pathology Department, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Zuzana Burdikova
- d Department of Cell Biology, School of Medicine , University of Virginia , Charlottesville , VA , USA
| | - Zdenek Svindrych
- e Department of Biology, W. M, Keck Center for Cellular Imaging , University of Virginia , Charlottesville , VA , USA
| | - Hynek Chlup
- f Faculty of Mechanical Engineering, Department of Mechanics, Biomechanics and Mechatronics , Czech Technical University in Prague , Prague , Czech Republic
| | - Lukas Horny
- f Faculty of Mechanical Engineering, Department of Mechanics, Biomechanics and Mechatronics , Czech Technical University in Prague , Prague , Czech Republic
| | - Matej Daniel
- f Faculty of Mechanical Engineering, Department of Mechanics, Biomechanics and Mechatronics , Czech Technical University in Prague , Prague , Czech Republic
| | - Jiri Machac
- g Institute of Botany CAS, Academy of Sciences of the Czech Republic , Pruhonice , Czech Republic
| | - Jelena Skibová
- h Department of Medical Statistics , Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Jan Pirk
- a Cardiology Centre and Cardiovascular Surgery Department , Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Lucie Bacakova
- b Department of Biomaterials and Tissue Engineering , Institute of Physiology, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| |
Collapse
|
9
|
Hasan A, Kolahdouz EM, Enquobahrie A, Caranasos TG, Vavalle JP, Griffith BE. Image-based immersed boundary model of the aortic root. Med Eng Phys 2017; 47:72-84. [PMID: 28778565 PMCID: PMC5599309 DOI: 10.1016/j.medengphy.2017.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Abstract
Each year, approximately 300,000 heart valve repair or replacement procedures are performed worldwide, including approximately 70,000 aortic valve replacement surgeries in the United States alone. Computational platforms for simulating cardiovascular devices such as prosthetic heart valves promise to improve device design and assist in treatment planning, including patient-specific device selection. This paper describes progress in constructing anatomically and physiologically realistic immersed boundary (IB) models of the dynamics of the aortic root and ascending aorta. This work builds on earlier IB models of fluid-structure interaction (FSI) in the aortic root, which previously achieved realistic hemodynamics over multiple cardiac cycles, but which also were limited to simplified aortic geometries and idealized descriptions of the biomechanics of the aortic valve cusps. By contrast, the model described herein uses an anatomical geometry reconstructed from patient-specific computed tomography angiography (CTA) data, and employs a description of the elasticity of the aortic valve leaflets based on a fiber-reinforced constitutive model fit to experimental tensile test data. The resulting model generates physiological pressures in both systole and diastole, and yields realistic cardiac output and stroke volume at physiological Reynolds numbers. Contact between the valve leaflets during diastole is handled automatically by the IB method, yielding a fully competent valve model that supports a physiological diastolic pressure load without regurgitation. Numerical tests show that the model is able to resolve the leaflet biomechanics in diastole and early systole at practical grid spacings. The model is also used to examine differences in the mechanics and fluid dynamics yielded by fresh valve leaflets and glutaraldehyde-fixed leaflets similar to those used in bioprosthetic heart valves. Although there are large differences in the leaflet deformations during diastole, the differences in the open configurations of the valve models are relatively small, and nearly identical hemodynamics are obtained in all cases considered.
Collapse
Affiliation(s)
- Ali Hasan
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Ebrahim M Kolahdouz
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Thomas G Caranasos
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - John P Vavalle
- Division of Cardiology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Boyce E Griffith
- Department of Mathematics and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Calcific Aortic Valve Disease Is Associated with Layer-Specific Alterations in Collagen Architecture. PLoS One 2016; 11:e0163858. [PMID: 27685946 PMCID: PMC5042542 DOI: 10.1371/journal.pone.0163858] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/15/2016] [Indexed: 11/20/2022] Open
Abstract
Disorganization of the valve extracellular matrix (ECM) is a hallmark of calcific aortic valve disease (CAVD). However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD. Human aortic valves were obtained from individuals between 50 and 75 years old with no evidence of valvular disease (healthy) and individuals who underwent valve replacement surgery due to severe stenosis (diseased). Second Harmonic Generation microscopy and subsequent image quantification revealed layer-specific changes in fiber characteristics in healthy and diseased valves. Specifically, the majority of collagen fiber changes in CAVD were found to occur in the spongiosa, where collagen fiber number increased by over 2-fold, and fiber width and density also significantly increased. Relatively few fibrillar changes occurred in the fibrosa in CAVD, where fibers became significantly shorter, but did not otherwise change in terms of number, width, density, or alignment. Immunohistochemical staining for lysyl oxidase showed localized increased expression in the diseased fibrosa. These findings reveal a more complex picture of valvular collagen enrichment and arrangement in CAVD than has previously been described using traditional analysis methods. Changes in fiber architecture may play a role in regulating the pathobiological events and mechanical properties of valves during CAVD. Additionally, characterization of the ECM microarchitecture can inform the design of fibrous scaffolds for heart valve tissue engineering.
Collapse
|