1
|
Trybulski R, Kużdżał A, Wilk M, Więckowski J, Fostiak K, Muracki J. Reliability of MyotonPro in measuring the biomechanical properties of the quadriceps femoris muscle in people with different levels and types of motor preparation. Front Sports Act Living 2024; 6:1453730. [PMID: 39267811 PMCID: PMC11390662 DOI: 10.3389/fspor.2024.1453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
The aim of this research was to evaluate the reliability of the measurements of biomechanical parameters of the muscles of athletes representing different disciplines as well as untrained people. Ninety-four young, healthy male individuals participated in the study and were divided into five subgroups: footballers (n = 25), volleyballers (n = 14), handballers (n = 19), MMA fighters (n = 16), and undrained group (n = 20). All of the participants underwent measurements of stiffness (S), muscle tone (T) and elasticity (E) by two independent measurers using MyotonPro equipment. Analysis was conducted on two different parts of the quadriceps femoris: rectus femoris (RF) and vastus medialis (VM. Consequently, the comprehensive analysis comprised 564 measurements (94 participants * 3 parameters = 282 * 2 measurers = 564). The results proves high reliability of the myotonometry (Pearson's CC over 0.8208-0.8871 for different parameters, ICC from to 0.74 to 0.99 for different muscles and parameters) excluding only stiffness for the VM which was characterized withlow ICC of 0.08 and relatively highest between the examined parameters MAE% of 8.7% which still remains low value. The most significant differences between the parameters in examined groups were observed between MMA fighters and volleyballers in terms of muscle tone and elasticity of the VM (correlation of 0.14842 and 0.15083 respecitively). These results confirm the usability of myotonometry in measuring the biomechanical properties of the muscles in different sports groups and confirm the independence of the results obtained from the person performing the measurement.
Collapse
Affiliation(s)
- Robert Trybulski
- Medical Center Provita Żory, Żory, Poland
- Medical Department, Wojciech Korfanty Upper Silesian Academy, Katowice, Poland
| | - Adrian Kużdżał
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Michał Wilk
- Institute of Sports Science, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | | | | | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| |
Collapse
|
2
|
Wang B, Mao Z, Guo J, Yang J, Zhang S. The non-invasive evaluation technique of patellofemoral joint stress: a systematic literature review. Front Bioeng Biotechnol 2023; 11:1197014. [PMID: 37456733 PMCID: PMC10343958 DOI: 10.3389/fbioe.2023.1197014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Patellofemoral joint stress (PFJS) is an important parameter for understanding the mechanism of patellofemoral joint pain, preventing patellofemoral joint injury, and evaluating the therapeutic efficacy of PFP rehabilitation programs. The purpose of this systematic review was to identify and categorize the non-invasive technique to evaluate the PFJS. Methods: Literature searches were conducted from January 2000 to October 2022 in electronic databases, namely, PubMed, Web of Science, and EBSCO (Medline, SPORTDiscus). This review includes studies that evaluated the patellofemoral joint reaction force (PJRF) or PFJS, with participants including both healthy individuals and those with patellofemoral joint pain, as well as cadavers with no organic changes. The study design includes cross-sectional studies, case-control studies, and randomized controlled trials. The JBI quality appraisal criteria tool was used to assess the risk of bias in the included studies. Results: In total, 5016 articles were identified in the database research and the citation network, and 69 studies were included in the review. Discussion: Researchers are still working to improve the accuracy of evaluation for PFJS by using a personalized model and optimizing quadriceps muscle strength calculations. In theory, the evaluation method of combining advanced computational and biplane fluoroscopy techniques has high accuracy in evaluating PFJS. The method should be further developed to establish the "gold standard" for PFJS evaluation. In practical applications, selecting appropriate methods and approaches based on theoretical considerations and ecological validity is essential.
Collapse
|
3
|
Pal S, Choi JH, Delp SL, Fredericson M. Botulinum neurotoxin type A improves vasti muscle balance, patellar tracking, and pain in patients with chronic patellofemoral pain. J Orthop Res 2022; 41:962-972. [PMID: 36031589 DOI: 10.1002/jor.25435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine the effects of botulinum neurotoxin type A (BoNT-A) on vastus lateralis:vastus medialis (VL:VM) muscle balance, patellar tracking, and pain in patients with chronic patellofemoral (PF) pain. We recruited 13 participants (9 females, 4 males) with recalcitrant PF pain who underwent ultrasound-guided BoNT-A injections into the distal third of the VL muscle, followed by a 6-week home exercise program to strengthen their VM muscle. We imaged the participants in a C-arm computed tomography (CT) scanner before and after the intervention. We calculated VL:VM ratios from CT images from a supine, nonweight-bearing condition. We obtained patellar tilt and bisect offset values from CT images from an upright, weight-bearing condition. We recorded functional pain scores before, immediately after, and 2-4 years after the intervention. We classified the participants into normal tracking and maltracking groups based on their patellar tilt and bisect offset values. BoNT-A with home exercise reduced VL:VM ratio (18%; p < 0.001), patellar tilt (19%; p = 0.020), and bisect offset (5%; p = 0.025). Four participants classified as maltrackers before the intervention transitioned to normal tracking after the intervention. Functional pain scores improved immediately after the intervention (13%, p < 0.001) and remained improved at 2-year follow-up (12%, p = 0.011). Statement of Clinical Significance: This study provides new evidence in support of BoNT-A for treatment of PF pain. Classification of patients under weight-bearing conditions may identify individuals who will most benefit from a BoNT-A treatment.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jang-Hwan Choi
- Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Scott L Delp
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Cartilage thickness and bone shape variations as a function of sex, height, body mass, and age in young adult knees. Sci Rep 2022; 12:11707. [PMID: 35810204 PMCID: PMC9271066 DOI: 10.1038/s41598-022-15585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
The functional relationship between bone and cartilage is modulated by mechanical factors. Scarce data exist on the relationship between bone shape and the spatial distribution of cartilage thickness. The aim of the study was to characterise the coupled variation in knee bone morphology and cartilage thickness distributions in knees with healthy cartilage and investigate this relationship as a function of sex, height, body mass, and age. MR images of 51 knees from young adults (28.4 ± 4.1 years) were obtained from a previous study and used to train a statistical shape model of the femur, tibia, and patella and their cartilages. Five multiple linear regression models were fitted to characterise morphology as a function of sex, height, body mass, and age. A logistic regression classifier was fitted to characterise morphological differences between males and females, and tenfold cross-validation was performed to evaluate the models’ performance. Our results showed that cartilage thickness and its distribution were coupled to bone morphology. The first five shape modes captured over 90% of the variance and described coupled changes to the bone and spatial distribution of cartilage thickness. Mode 1 (size) was correlated to sex (p < 0.001) and height (p < 0.0001). Mode 2 (aspect ratio) was also correlated to sex (p = 0.006) and height (p = 0.017). Mode 4 (condylar depth) was correlated to sex only (p = 0.024). A logistic regression model trained on modes 1, 2, and 4 could classify sex with an accuracy of 92.2% (95% CI [81.1%, 97.8%]). No other modes were influenced by sex, height, body mass, or age. This study demonstrated the coupled relationship between bone and cartilage, showing that cartilage is thicker with increased bone size, diaphysis size, and decreased femoral skew. Our results show that sex and height influence bone shape and the spatial distribution of cartilage thickness in a healthy young adult population, but body mass and age do not.
Collapse
|
5
|
Rooks NB, Besier TF, Schneider MTY. A Parameter Sensitivity Analysis on Multiple Finite Element Knee Joint Models. Front Bioeng Biotechnol 2022; 10:841882. [PMID: 35694233 PMCID: PMC9178290 DOI: 10.3389/fbioe.2022.841882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
The reproducibility of computational knee joint modeling is questionable, with models varying depending on the modeling team. The influence of model variations on simulation outcomes should be investigated, since knowing the sensitivity of the model outcomes to model parameters could help determine which parameters to calibrate and which parameters could potentially be standardized, improving model reproducibility. Previous sensitivity analyses on finite element knee joint models have typically used one model, with a few parameters and ligaments represented as line segments. In this study, a parameter sensitivity analysis was performed using multiple finite element knee joint models with continuum ligament representations. Four previously developed and calibrated models of the tibiofemoral joint were used. Parameters of the ligament and meniscus material models, the cartilage contact formulation, the simulation control and the rigid cylindrical joints were studied. Varus-valgus simulations were performed, changing one parameter at a time. The sensitivity on model convergence, valgus kinematics, articulating cartilage contact pressure and contact pressure location were investigated. A scoring system was defined to categorize the parameters as having a “large,” “medium” or “small” influence on model output. Model outcomes were sensitive to the ligament prestretch factor, Young’s modulus and attachment condition parameters. Changes in the meniscus horn stiffness had a “small” influence. Of the cartilage contact parameters, the penalty factor and Augmented Lagrangian setting had a “large” influence on the cartilage contact pressure. In the rigid cylindrical joint, the largest influence on the outcome parameters was found by the moment penalty parameter, which caused convergence issues. The force penalty and gap tolerance had a “small” influence at most. For the majority of parameters, the sensitivity was model-dependent. For example, only two models showed convergence issues when changing the Quasi-Newton update method. Due to the sensitivity of the model parameters being model-specific, the sensitivity of the parameters found in one model cannot be assumed to be the same in other models. The sensitivity of the model outcomes to ligament material properties confirms that calibration of these parameters is critical and using literature values may not be appropriate.
Collapse
Affiliation(s)
- Nynke B. Rooks
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Thor F. Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, New Zealand
- *Correspondence: Thor F. Besier,
| | | |
Collapse
|
6
|
Dandu N, Knapik DM, Trasolini NA, Zavras AG, Yanke AB. Future Directions in Patellofemoral Imaging and 3D Modeling. Curr Rev Musculoskelet Med 2022; 15:82-89. [PMID: 35469362 DOI: 10.1007/s12178-022-09746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Patellofemoral instability involves complex, three-dimensional pathological anatomy. However, current clinical evaluation and diagnosis relies on attempting to capture the pathology through numerous two-dimensional measurements. This current review focuses on recent advancements in patellofemoral imaging and three-dimensional modeling. RECENT FINDINGS Several studies have demonstrated the utility of dynamic imaging modalities. Specifically, radiographic patellar tracking correlates with symptomatic instability, and quadriceps activation and weightbearing alter patellar kinematics. Further advancements include the study of three-dimensional models. Automation of commonly utilized measurements such as tibial tubercle-trochlear groove (TT-TG) distance has the potential to resolve issues with inter-rater reliability and fluctuation with knee flexion or tibial rotation. Future directions include development of robust computational models (e.g., finite element analysis) capable of incorporating patient-specific data for surgical planning purposes. While several studies have utilized novel dynamic imaging and modeling techniques to enhance our understanding of patellofemoral joint mechanics, these methods have yet to find a definitive clinical utility. Further investigation is required to develop practical implementation into clinical workflow.
Collapse
Affiliation(s)
- Navya Dandu
- Rush University Medical Center, 1611 W Harrison St, St 300, Chicago, IL, 60612, USA
| | - Derrick M Knapik
- Rush University Medical Center, 1611 W Harrison St, St 300, Chicago, IL, 60612, USA
| | - Nicholas A Trasolini
- Rush University Medical Center, 1611 W Harrison St, St 300, Chicago, IL, 60612, USA
| | - Athan G Zavras
- Rush University Medical Center, 1611 W Harrison St, St 300, Chicago, IL, 60612, USA
| | - Adam B Yanke
- Rush University Medical Center, 1611 W Harrison St, St 300, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Seyedpour SM, Nafisi S, Nabati M, Pierce DM, Reichenbach JR, Ricken T. Magnetic Resonance Imaging-based biomechanical simulation of cartilage: A systematic review. J Mech Behav Biomed Mater 2021; 126:104963. [PMID: 34894500 DOI: 10.1016/j.jmbbm.2021.104963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022]
Abstract
MRI-based mathematical and computational modeling studies can contribute to a better understanding of the mechanisms governing cartilage's mechanical performance and cartilage disease. In addition, distinct modeling of cartilage is needed to optimize artificial cartilage production. These studies have opened up the prospect of further deepening our understanding of cartilage function. Furthermore, these studies reveal the initiation of an engineering-level approach to how cartilage disease affects material properties and cartilage function. Aimed at researchers in the field of MRI-based cartilage simulation, research articles pertinent to MRI-based cartilage modeling were identified, reviewed, and summarized systematically. Various MRI applications for cartilage modeling are highlighted, and the limitations of different constitutive models used are addressed. In addition, the clinical application of simulations and studied diseases are discussed. The paper's quality, based on the developed questionnaire, was assessed, and out of 79 reviewed papers, 34 papers were determined as high-quality. Due to the lack of the best constitutive models for various clinical conditions, researchers may consider the effect of constitutive material models on the cartilage disease simulation. In the future, research groups may incorporate various aspects of machine learning into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification, such as gait analysis.
Collapse
Affiliation(s)
- S M Seyedpour
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany; Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - S Nafisi
- Faculty of Pharmacy, Istinye University, Maltepe, Cirpici Yolu B Ck. No. 9, 34010 Zeytinburnu, Istanbul, Turkey
| | - M Nabati
- Department of Mechanical Engineering, Faculty of Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
| | - D M Pierce
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT, 06269, USA; Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT, 06269, USA
| | - J R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany; Center of Medical Optics and Photonics, Friedrich Schiller University Jena, Germany; Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Germany
| | - T Ricken
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany; Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany.
| |
Collapse
|
8
|
Ghany JF, Kamel S, Zoga A, Farrell T, Morrison W, Belair J, Desai V. Extensor mechanism tendinopathy in patients with lateral patellar maltracking. Skeletal Radiol 2021; 50:2205-2212. [PMID: 33876276 DOI: 10.1007/s00256-021-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Patellar maltracking is an important subset of patellofemoral pain syndrome. We hypothesize that maltracking patients have an increased incidence of extensor mechanism dysfunction due to repetitive attempts at stabilization of the patella. Our purpose is to delineate imaging features to identify maltracking patients at risk for extensor mechanism tendinopathy. MATERIALS AND METHODS Retrospective review of knee MRIs performed for anterior knee pain over a year was conducted to identify 218 studies with imaging findings of maltracking. The cases were evaluated for the presence and degree of patellar and quadriceps tendinopathy, tibial tuberosity-trochlear groove distance (TT-TG) and the distribution and grade of patellofemoral chondrosis. Cases were compared to 100 healthy, age-matched control knee MRIs. RESULTS The mean age of maltracking patients with either patellar or quadriceps tendinosis was 41.2 years versus 48.2 years in the control population (p = 0.037). The TT-TG was significantly higher in maltracking patients with either patellar or quadriceps tendinosis at 16.49 mm versus 14.99 mm (p = 0.006). Maltrackers with isolated lateral patellofemoral chondrosis had a higher mean TT-TG at 17.4 mm versus 15.4 mm (p = 0.007). Extensor mechanism tendinosis was increased in the maltracking population compared to the controls at 57.8% versus 27.3% (p = 0.004). CONCLUSION Extensor mechanism tendinosis is more common in the maltracking population and occurs at a younger age. TT-TG distance is significantly increased in patients with extensor mechanism dysfunction and in patients with isolated lateral patellofemoral chondrosis. TT-TG measurement can be used independently to identifying maltrackers who may be at risk for future complications.
Collapse
Affiliation(s)
- Jehan F Ghany
- Musculoskeletal Radiology, Department of Radiology, The Royal Liverpool and Broadgreen University Hospital, Prescot Street, Liverpool, L7 8XP, UK.
| | - Sarah Kamel
- Musculoskeletal Imaging, Department of Radiology, Thomas Jefferson University Hospital, 1087 Main Building, 132 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Adam Zoga
- Musculoskeletal Imaging, Department of Radiology, Thomas Jefferson University Hospital, 1087 Main Building, 132 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Terence Farrell
- Musculoskeletal Imaging, Department of Radiology, Thomas Jefferson University Hospital, 1087 Main Building, 132 S. 10th Street, Philadelphia, PA, 19107, USA
| | - William Morrison
- Musculoskeletal Imaging, Department of Radiology, Thomas Jefferson University Hospital, 1087 Main Building, 132 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Jeffrey Belair
- Musculoskeletal Imaging, Department of Radiology, Thomas Jefferson University Hospital, 1087 Main Building, 132 S. 10th Street, Philadelphia, PA, 19107, USA
| | - Vishal Desai
- Musculoskeletal Imaging, Department of Radiology, Thomas Jefferson University Hospital, 1087 Main Building, 132 S. 10th Street, Philadelphia, PA, 19107, USA
| |
Collapse
|
9
|
Bini R, Lock M, Hommelhoff G. Lower limb muscle and joint forces during front and back squats performed on a Smith machine. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-202168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Comparison of knee loads on a Smith machine, which is utilised for maintenance of health and rehabilitation, has not been attempted. OBJECTIVE: This study compared lower limb muscle and knee joint forces during front and back squats performed on a Smith Machine. METHODS: Eleven participants performed front and back squats with loads at 40%, 60% and 80% of their back squat 1-RMs. Ground reaction forces and three-dimensional full body motion were collected and used for modelling lower limb muscle and knee joint forces. RESULTS: Larger loads increased tibiofemoral compressive force during back squat at 80% compared to 40% (p< 0.01; d= 1.58) and to 60% (p< 0.01; d= 1.37). Patellofemoral compressive (p= 0.96) and tibiofemoral shear forces (p= 0.55) were not influenced by external load or type of squat. Gluteus medius and minimus produced more force at 80% compared to 60% (p= 0.01; d= 1.10) and to 40% (p< 0.01; d= 1.87) without differences for other muscles (p= 0.09–0.91). CONCLUSIONS: Greater external load was associated with increase in gluteus medius and minimus force and with increased tibiofemoral compressive force without effects on tibiofemoral shear force, patellofemoral compressive force or other lower limb muscle forces.
Collapse
|
10
|
Yu L, Mei Q, Mohamad NI, Gu Y, Fernandez J. An exploratory investigation of patellofemoral joint loadings during directional lunges in badminton. Comput Biol Med 2021; 132:104302. [PMID: 33677166 DOI: 10.1016/j.compbiomed.2021.104302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Anterior knee pain is a commonly documented musculoskeletal disorder among badminton players. However, current biomechanical studies of badminton lunges mainly report kinetic profiles in the lower extremity with few investigations of in-vivo loadings. The objective of this study was to evaluate tissue loadings in the patellofemoral joint via musculoskeletal modelling and Finite Element simulation. The collected marker trajectories, ground reaction force and muscle activation data were used for musculoskeletal modelling to compute knee joint angles and quadricep muscle forces. These parameters were then set as boundary conditions and loads for a quasistatic simulation using the Abaqus Explicit solver. Simulations revealed that the left-forward (LF) and backward lunges showed greater contact pressure (14.98-29.61%) and von Mises stress (14.17-32.02%) than the right-forward and backward lunges; while, loadings in the left-backward lunge were greater than the left-forward lunge by 13-14%. Specifically, the stress in the chondral layer was greater than the contact interface, particularly in the patellar cartilage. These findings suggest that right-side dominant badminton players load higher in the right patellofemoral joint during left-side (backhand) lunges. Knowledge of these tissue loadings may provide implications for the training of badminton footwork, such as musculature development, to reduce cartilage loading accumulation, and prevent anterior knee pain.
Collapse
Affiliation(s)
- Lin Yu
- Loudi Vocational and Technical College, Loudi, China; Faculty of Sports Sciences and Coaching, Sultan Idris Education University, Tanjong Malim, Malaysia; Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Qichang Mei
- Faculty of Sports Science, Ningbo University, Ningbo, China; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Nur Ikhwan Mohamad
- Faculty of Sports Sciences and Coaching, Sultan Idris Education University, Tanjong Malim, Malaysia
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Justin Fernandez
- Faculty of Sports Science, Ningbo University, Ningbo, China; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Bini R, Hume P. Reproducibility of lower limb motion and forces during stationary submaximal pedalling using wearable motion tracking sensors. Sports Biomech 2020:1-22. [PMID: 32623961 DOI: 10.1080/14763141.2020.1776760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In order to address gaps in the literature, this study assessed the reproducibility (i.e., difference between and within sessions) of joint and muscle forces using wearable sensors during stationary cycling. Seventeen male cyclists performed two sessions on a cycle ergometer cycling at a combination of three power outputs (1.5, 2.5 and 3.5 W/kg) and three pedalling cadences (60, 80 and 100 rpm) in two sessions (2-7 days apart). The first trial from each session was repeated at the end of the session for assessment of within-session reproducibility. Three-dimensional (3D) full-body motion and 3D bilateral pedal forces were collected using an inertial motion tracking system and a pair of instrumented pedals, respectively. Joint angles, muscle forces and knee joint forces were computed using OpenSim. Poor to excellent agreement (ICCs = 0.31-0.99) was observed and differences were trivial to small and non-significant between trials within-session. Poor to excellent agreement (ICCs = 0.05-0.97) was observed and differences were trivial to large between sessions. Variability can be attributed to changes in muscle recruitment strategies (within and between-sessions) and to repositioning of sensors (between-sessions).
Collapse
Affiliation(s)
- Rodrigo Bini
- La Trobe Rural Health School, La Trobe University, Bendigo, Australia.,Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| | - Patria Hume
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The patellofemoral joint is a complicated articulation of the patella and femur that is prone to pathologies. The purpose of this review is to report on the current methods of investigating patellofemoral mechanics, factors that affect joint function, and future directions in patellofemoral joint research with emerging technologies and techniques. RECENT FINDINGS While previous hypotheses have suggested that the patella is only a moment arm extender, recent literature has suggested that the patella influences the control of knee moments and forces acting on the tibia as well as contributes to various aspects of patellar function with minimal neural input. With advancements in simulating a six-degrees-of-freedom patellofemoral joint, we have gained a better understanding of patella motion and have shown that geometry and muscle activations impact patella mechanics. Research into influences on patella mechanics from other joints such as the hip and foot has become more prevalent. In this review, we report current in vivo, in vitro, and in silico approaches to studying the patellofemoral joint. Kinematic and anatomical factors that affect patellofemoral joint function such as patella alta and tilt or bone morphology and ligaments are discussed. Moving forward, we suggest that advanced in vivo dynamic imaging methods coupled to musculoskeletal simulation will provide further understanding of patellofemoral pathomechanics and allow engineers and clinicians to design interventions to mitigate or prevent patellofemoral pathologies.
Collapse
|
13
|
Sagl B, Schmid-Schwap M, Piehslinger E, Kundi M, Stavness I. A Dynamic Jaw Model With a Finite-Element Temporomandibular Joint. Front Physiol 2019; 10:1156. [PMID: 31607939 PMCID: PMC6757193 DOI: 10.3389/fphys.2019.01156] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The masticatory region is an important human motion system that is essential for basic human tasks like mastication, speech or swallowing. An association between temporomandibular disorders (TMDs) and high temporomandibular joint (TMJ) stress has been suggested, but in vivo joint force measurements are not feasible to directly test this assumption. Consequently, biomechanical computer simulation remains as one of a few means to investigate this complex system. To thoroughly examine orofacial biomechanics, we developed a novel, dynamic computer model of the masticatory system. The model combines a muscle driven rigid body model of the jaw region with a detailed finite element model (FEM) disk and elastic foundation (EF) articular cartilage. The model is validated using high-resolution MRI data for protrusion and opening that were collected from the same volunteer. Joint stresses for a clenching task as well as protrusive and opening movements are computed. Simulations resulted in mandibular positions as well as disk positions and shapes that agree well with the MRI data. The model computes reasonable disk stress patterns for dynamic tasks. Moreover, to the best of our knowledge this model presents the first ever contact model using a combination of EF layers and a FEM body, which results in a clear decrease in computation time. In conclusion, the presented model is a valuable tool for the investigation of the human TMJ and can potentially help in the future to increase the understanding of the masticatory system and the relationship between TMD and joint stress and to highlight potential therapeutic approaches for the restoration of orofacial function.
Collapse
Affiliation(s)
- Benedikt Sagl
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Martina Schmid-Schwap
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Eva Piehslinger
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Ian Stavness
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Fatima M, Scholes CJ, Zhong E, Kohan L. Towards a Dynamic Model of the Kangaroo Knee for Clinical Insights into Human Knee Pathology and Treatment: Establishing a Static Biomechanical Profile. Biomimetics (Basel) 2019; 4:biomimetics4030052. [PMID: 31349696 PMCID: PMC6784414 DOI: 10.3390/biomimetics4030052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
There is limited understanding of how patella realignment or patellectomy to surgically manage patellofemoral pain (PFP) affects knee biomechanics. By analysing marsupials like kangaroos that lack an ossified patella, actionable biomimetic insight for the management of end-stage PFP could be gained. This study aimed to provide the foundation of a multi-stage approach, by establishing a static biomechanical profile of the kangaroo stifle that informs the inputs and factors requiring consideration for future dynamic analyses. Volumetric CT and MRI sequences were obtained for four hindlimbs from two Macropus giganteus specimens, from which three-dimensional models of the stifles were created. Two limbs were dissected to visualise the insertion points, origins and lines of action of the quadriceps muscles and the knee extensor mechanism. Static measurements were obtained from the three-dimensional models to establish the biomechanical profile. The results confirmed structural differences in the kangaroo stifle with lack of an ossified patella, a prominent tuberosity and a shorter femur, which functionally affect the mechanical advantage and the torque-generating capability of the joint. The data reported in this study can be used to inform the inputs and constraints of future comparative analyses from which important lessons can be learned for the human knee.
Collapse
Affiliation(s)
| | | | - Emily Zhong
- EBM Analytics, Crows Nest, NSW 2065, Australia
| | - Lawrence Kohan
- Joint Orthopaedic Centre, Bondi Junction, NSW 2022, Australia
| |
Collapse
|