1
|
Walter NM, Yde Ohki CM, Smigielski L, Walitza S, Grünblatt E. Investigating the impact of omega-3 fatty acids on oxidative stress and pro-inflammatory cytokine release in iPSC-derived forebrain cortical neurons from ADHD patients. J Psychiatr Res 2025; 182:257-269. [PMID: 39826376 DOI: 10.1016/j.jpsychires.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Marupudi N, Xiong MP. Genetic Targets and Applications of Iron Chelators for Neurodegeneration with Brain Iron Accumulation. ACS BIO & MED CHEM AU 2024; 4:119-130. [PMID: 38911909 PMCID: PMC11191567 DOI: 10.1021/acsbiomedchemau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 06/25/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of neurodegenerative diseases that are typically caused by a monogenetic mutation, leading to development of disordered movement symptoms such as dystonia, hyperreflexia, etc. Brain iron accumulation can be diagnosed through MRI imaging and is hypothesized to be the cause of oxidative stress, leading to the degeneration of brain tissue. There are four main types of NBIA: pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MKAN), and beta-propeller protein-associated neurodegeneration (BPAN). There are no causative therapies for these diseases, but iron chelators have been shown to have potential toward treating NBIA. Three chelators are investigated in this Review: deferoxamine (DFO), desferasirox (DFS), and deferiprone (DFP). DFO has been investigated to treat neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD); however, dose-related toxicity in these studies, as well as in PKAN studies, have shown that the drug still requires more development before it can be applied toward NBIA cases. Iron chelation therapies other than the ones currently in clinical use have not yet reached clinical studies, but they may possess characteristics that would allow them to access the brain in ways that current chelators cannot. Intranasal formulations are an attractive dosage form to study for chelation therapy, as this method of delivery can bypass the blood-brain barrier and access the CNS. Gene therapy differs from iron chelation therapy as it is a causal treatment of the disease, whereas iron chelators only target the disease progression of NBIA. Because the pathophysiology of NBIA diseases is still unclear, future courses of action should be focused on causative treatment; however, iron chelation therapy is the current best course of action.
Collapse
Affiliation(s)
- Neharika Marupudi
- Department of Pharmaceutical
& Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| | - May P. Xiong
- Department of Pharmaceutical
& Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, United States
| |
Collapse
|
3
|
Faccinetto-Beltrán P, Reza-Zaldivar EE, Curiel-Pedraza DA, Canales-Aguirre AA, Jacobo-Velázquez DA. Docosahexaenoic Acid (DHA), Vitamin D3, and Probiotics Supplementation Improve Memory, Glial Reactivity, and Oxidative Stress Biomarkers in an Aluminum-Induced Cognitive Impairment Rat Model. ACS OMEGA 2024; 9:21221-21233. [PMID: 38764689 PMCID: PMC11097360 DOI: 10.1021/acsomega.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Globally, the rise in neurodegenerative issues in tandem with shifts in lifestyle and aging population has prompted a search for effective interventions. Nutraceutical compounds have emerged as promising agents for addressing these challenges. This 60-day study on an aluminum-induced cognitive impairment rat model assessed three compounds and their combinations: probiotics (Prob, Lactobacillus plantarum [5 × 1010 CFU/day], and Lactobacillus acidophilus [5 × 1010 CFU/day]), docosahexaenoic acid (DHA, 23.8 mg/day), and vitamin D3 (VD3, 150 IU/day). Behavioral outcomes were evaluated by using the Morris water maze and novel object recognition tests. Glial activation was assessed through immunofluorescence analysis of GFAP/Iba1, and oxidative stress markers in brain tissue were determined by measuring the levels of Malondialdehyde (MDA) and Superoxide dismutase (SOD). The results demonstrated a progressive improvement in the learning and memory capacity. The aluminum group exhibited the poorest performance in the behavioral test, enhanced GFAP/Iba1 activation, and elevated levels of oxidative stress markers. Conversely, the DHA + Prob + VD3 treatment demonstrated the best performance in the Morris water maze. The combination of DHA + Prob + VD3 exhibited superior performance in the Morris water maze, accompanied by reduced levels of GFAP/Iba1 activation in DG/CA1 brain regions. Furthermore, DHA + Prob supplementation showed lower GFAP/Iba1 activation in the CA3 region and enhanced antioxidant activity. In summary, supplementing various nutraceutical combinations, including DHA, VD3, and Prob, displayed notable benefits against aluminum-induced cognitive impairment. These benefits encompassed memory enhancement, diminished MDA concentration, increased SOD activity, and reduced glial activation, as indicated by GFAP/Iba1 markers.
Collapse
Affiliation(s)
- Paulinna Faccinetto-Beltrán
- Escuela
de Ingeniería y Ciencias, Campus Guadalajara, Tecnologico de Monterrey, Av. General Ramon Corona 2514, C.P.
45201 Zapopan, Jalisco, Mexico
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| | - Edwin E. Reza-Zaldivar
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| | - David Alejandro Curiel-Pedraza
- Preclinical
Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico
| | - Alejandro A. Canales-Aguirre
- Preclinical
Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico
| | - Daniel A. Jacobo-Velázquez
- Escuela
de Ingeniería y Ciencias, Campus Guadalajara, Tecnologico de Monterrey, Av. General Ramon Corona 2514, C.P.
45201 Zapopan, Jalisco, Mexico
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| |
Collapse
|
4
|
Shrestha S, Choi JS, Zhang W, Smid SD. Neuroprotective activity of macroalgal fucofuroeckols against amyloid β peptide‐induced cell death and oxidative stress. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Srijan Shrestha
- Discipline of Pharmacology School of Biomedicine Faculty of Health Sciences The University of Adelaide Adelaide 5005 SA Australia
| | - Jae Sue Choi
- Institute of Fisheries Sciences Pukyong National University Busan 46041 Korea
| | - Wei Zhang
- Centre for Marine Bioproducts Development (CMBD) College of Medicine and Public Health Flinders University 5001 Adelaide SA Australia
- Department of Medical Biotechnology College of Medicine and Public Health Flinders University 5001 Adelaide SA Australia
| | - Scott D. Smid
- Discipline of Pharmacology School of Biomedicine Faculty of Health Sciences The University of Adelaide Adelaide 5005 SA Australia
| |
Collapse
|
5
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Asari MA, Sirajudeen K, Mohd Yusof NA, Mohd Amin MSI. DHA-rich fish oil and Tualang honey reduce chronic stress-induced oxidative damage in the brain of rat model. J Tradit Complement Med 2021; 12:361-366. [PMID: 35747355 PMCID: PMC9209864 DOI: 10.1016/j.jtcme.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background Exposure to chronic stress induces oxidative damage which alters the dynamic balance between antioxidant and pro-oxidant activities in the brain. Tualang honey (TH) is a Malaysian wild multifloral honey which has been shown to contain high amount antioxidants. DHA-rich fish oil is a form of omega-3 fatty acids found in fish which also possesses some antioxidant activity. This study aimed to evaluate anti-stress activity of DHA-rich fish oil, TH and their combination on several parameters of oxidative stress in chronic stress rat model. Methods Fifty male Sprague Dawley rats were divided into (i) control, (ii) stress-exposed, (iii) stress-exposed and treated with TH (1 g/kg body weight twice daily), (iv) stress-exposed and treated with DHA-rich fish oil (450 mg/kg body weight twice daily), and (v) stress-exposed and treated with a combination of TH and DHA-rich fish oil. The chronic stress regimen consisted of a combination of restraint stress and a swim stress test for 28 days. Results DHA-rich fish oil and TH significantly (p < 0.05) supressed stress-induced elevation of serum corticosterone and lipid peroxidation, and caused a significant increase in total antioxidant capacity. For glutathione status, only TH significantly reduced stress-induced elevation of oxidised glutathione (GSSG) and normalised GSH/GSSG ratio. Conclusion: Both DHA-rich fish oil and TH have protective effects against brain oxidative stress but consuming these substances together does not seem to provide an additional benefit compared to consuming them separately. Investigated the effect of honey, DHA and their combination in single experimental setting. Tualang honey and DHA-rich fish oil can attenuate brain oxidative stress in chronic stress rat model. Combination of Tualang honey and DHA -rich fish oil is not superior than consuming these substances separately.
Collapse
|
7
|
A Comprehensive Review of the Composition, Nutritional Value, and Functional Properties of Camel Milk Fat. Foods 2021; 10:foods10092158. [PMID: 34574268 PMCID: PMC8472115 DOI: 10.3390/foods10092158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, camel milk (CM) has been considered as a health-promoting icon due to its medicinal and nutritional benefits. CM fat globule membrane has numerous health-promoting properties, such as anti-adhesion and anti-bacterial properties, which are suitable for people who are allergic to cow's milk. CM contains milk fat globules with a small size, which accounts for their rapid digestion. Moreover, it also comprises lower amounts of cholesterol and saturated fatty acids concurrent with higher levels of essential fatty acids than cow milk, with an improved lipid profile manifested by reducing cholesterol levels in the blood. In addition, it is rich in phospholipids, especially plasmalogens and sphingomyelin, suggesting that CM fat may meet the daily nutritional requirements of adults and infants. Thus, CM and its dairy products have become more attractive for consumers. In view of this, we performed a comprehensive review of CM fat's composition and nutritional properties. The overall goal is to increase knowledge related to CM fat characteristics and modify its unfavorable perception. Future studies are expected to be directed toward a better understanding of CM fat, which appears to be promising in the design and formulation of new products with significant health-promoting benefits.
Collapse
|
8
|
Watkins OC, Selvam P, Appukuttan Pillai R, Cracknell-Hazra VKB, Yong HEJ, Sharma N, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Placental 13C-DHA metabolism and relationship with maternal BMI, glycemia and birthweight. Mol Med 2021; 27:84. [PMID: 34362294 PMCID: PMC8349043 DOI: 10.1186/s10020-021-00344-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fetal docosahexaenoic acid (DHA) supply relies on preferential transplacental transfer, which is regulated by placental DHA lipid metabolism. Maternal hyperglycemia and obesity associate with higher birthweight and fetal DHA insufficiency but the role of placental DHA metabolism is unclear. METHODS Explants from 17 term placenta were incubated with 13C-labeled DHA for 48 h, at 5 or 10 mmol/L glucose treatment, and the production of 17 individual newly synthesized 13C-DHA labeled lipids quantified by liquid chromatography mass spectrometry. RESULTS Maternal BMI positively associated with 13C-DHA-labeled diacylglycerols, triacylglycerols, lysophospholipids, phosphatidylcholine and phosphatidylethanolamine plasmalogens, while maternal fasting glycemia positively associated with five 13C-DHA triacylglycerols. In turn, 13C-DHA-labeled phospholipids and triacylglycerols positively associated with birthweight centile. In-vitro glucose treatment increased most 13C-DHA-lipids, but decreased 13C-DHA phosphatidylethanolamine plasmalogens. However, with increasing maternal BMI, the magnitude of the glucose treatment induced increase in 13C-DHA phosphatidylcholine and 13C-DHA lysophospholipids was curtailed, with further decline in 13C-DHA phosphatidylethanolamine plasmalogens. Conversely, with increasing birthweight centile glucose treatment induced increases in 13C-DHA triacylglycerols were exaggerated, while glucose treatment induced decreases in 13C-DHA phosphatidylethanolamine plasmalogens were diminished. CONCLUSIONS Maternal BMI and glycemia increased the production of different placental DHA lipids implying impact on different metabolic pathways. Glucose-induced elevation in placental DHA metabolism is moderated with higher maternal BMI. In turn, findings of associations between many DHA lipids with birthweight suggest that BMI and glycemia promote fetal growth partly through changes in placental DHA metabolism.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Victoria K B Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rohan M Lewis
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
9
|
Nannepaga J, Ganna S, Gutturu R, Megala R, Nadella R, Borelli DR. Targeted delivery of curcumin using MgONPs and solid lipid nanoparticles: Attenuates aluminum.induced neurotoxicity in albino rats. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_18_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Omega-3 Polyunsaturated Fatty Acid Deficiency and Progressive Neuropathology in Psychiatric Disorders: A Review of Translational Evidence and Candidate Mechanisms. Harv Rev Psychiatry 2019; 27:94-107. [PMID: 30633010 PMCID: PMC6411441 DOI: 10.1097/hrp.0000000000000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Meta-analytic evidence indicates that mood and psychotic disorders are associated with both omega-3 polyunsaturated fatty acid (omega-3 PUFA) deficits and progressive regional gray and white matter pathology. Although the association between omega-3 PUFA insufficiency and progressive neuropathological processes remains speculative, evidence from translational research suggests that omega-3 PUFA insufficiency may represent a plausible and modifiable risk factor not only for enduring neurodevelopmental abnormalities in brain structure and function, but also for increased vulnerability to neurodegenerative processes. Recent evidence from human neuroimaging studies suggests that lower omega-3 PUFA intake/status is associated with accelerated gray matter atrophy in healthy middle-aged and elderly adults, particularly in brain regions consistently implicated in mood and psychotic disorders, including the amygdala, anterior cingulate, hippocampus, prefrontal cortex, and temporal cortex. Human neuroimaging evidence also suggests that both low omega-3 PUFA intake/status and psychiatric disorders are associated with reductions in white matter microstructural integrity and increased rates of white matter hyperintensities. Preliminary evidence suggests that increasing omega-3 PUFA status is protective against gray matter atrophy and deficits in white matter microstructural integrity in patients with mood and psychotic disorders. Plausible mechanisms mediating this relationship include elevated pro-inflammatory signaling, increased synaptic regression, and reductions in cerebral perfusion. Together these associations encourage additional neuroimaging research to directly investigate whether increasing omega-3 PUFA status can mitigate neuropathological processes in patients with, or at high risk for, psychiatric disorders.
Collapse
|
11
|
Rahim RS, St John JA, Crane DI, Meedeniya ACB. Impaired neurogenesis and associated gliosis in mouse brain with PEX13 deficiency. Mol Cell Neurosci 2017; 88:16-32. [PMID: 29187321 DOI: 10.1016/j.mcn.2017.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/04/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
Zellweger syndrome (ZS), a neonatal lethal disorder arising from defective peroxisome biogenesis, features profound neuroanatomical abnormalities and brain dysfunction. Here we used mice with brain-restricted inactivation of the peroxisome biogenesis gene PEX13 to model the pathophysiological features of ZS, and determine the impact of peroxisome dysfunction on neurogenesis and cell maturation in ZS. In the embryonic and postnatal PEX13 mutant brain, we demonstrate key regions with altered brain anatomy, including enlarged lateral ventricles and aberrant cortical, hippocampal and hypothalamic organization. To characterize the underlying mechanisms, we show a significant reduction in proliferation, migration, differentiation, and maturation of neural progenitors in embryonic E12.5 through to P3 animals. An increasing reactive gliosis in the PEX13 mutant brain started at E14.5 in association with the pathology. Together with impaired neurogenesis and associated gliosis, our data demonstrate increased cell death contributing to the hallmark brain anatomy of ZS. We provide unique data where impaired neurogenesis and migration are shown as critical events underlying the neuropathology and altered brain function of mice with peroxisome deficiency.
Collapse
Affiliation(s)
- Rani Sadia Rahim
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Australia; Menzies Health Institute Queensland, Griffith University, Qld, Australia
| | - Denis I Crane
- Griffith Institute for Drug Discovery, School of Natural Sciences, Griffith University, Qld, Australia.
| | - Adrian C B Meedeniya
- Menzies Health Institute Queensland, Griffith University, Qld, Australia; Interdisciplinary Centre for Innovations in Biotechnology & Neurosciences, University of Sri Jayawardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
12
|
Carvalho-Silva M, Gomes LM, Scaini G, Rebelo J, Damiani AP, Pereira M, Andrade VM, Gava FF, Valvassori SS, Schuck PF, Ferreira GC, Streck EL. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II. Metab Brain Dis 2017; 32:1043-1050. [PMID: 28315992 DOI: 10.1007/s11011-017-9994-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Abstract
Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.
Collapse
Affiliation(s)
- Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maiara Pereira
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samira S Valvassori
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Physiological performance of the intertidal Manila clam (Ruditapes philippinarum) to long-term daily rhythms of air exposure. Sci Rep 2017; 7:41648. [PMID: 28128354 PMCID: PMC5269718 DOI: 10.1038/srep41648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 12/27/2022] Open
Abstract
Intertidal organisms, especially the sessile species, often experience long-term periodic air exposure during their lives. Learning the biochemical and physiological responses of intertidal organisms to long-term periodic air exposure and the relationship to duration of air exposure provides insight into adaptation to this variably stressful environment. We studied the Manila clam, Ruditapes philippinarum, an important species in world aquaculture, as a model to evaluate survival, growth, lipid composition, oxygen consumption, oxidative damage, and antioxidant enzyme activity in relation to the duration of air exposure in a long-term (60 days) laboratory study of varying durations of periodic emersion and re-immersion. Our results show: (1) clams undergoing a longer period of air exposure had lower survival and growth compared to those given a shorter exposure, (2) levels of oxidative damage and activities of antioxidant enzymes were higher in all air exposure treatments, but did not increase with duration of air exposure, and (3) the content of docosahexaenoic acid increased with duration of air exposure. Our results can largely be interpreted in the context of the energy expenditure by the clams caused by aerobic metabolism during the daily cycle of emersion and re-immersion and the roles of docosahexaenoic acid against oxidative stress.
Collapse
|
14
|
Polyunsaturated fatty acids and recurrent mood disorders: Phenomenology, mechanisms, and clinical application. Prog Lipid Res 2017; 66:1-13. [PMID: 28069365 DOI: 10.1016/j.plipres.2017.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of recurrent mood disorders including major depressive disorder (MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 PUFA levels which are associated with increased risk for the initial development of mood symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal development can recapitulate key neuropathological, neurochemical, and behavioral features associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA biostatus is associated with abnormalities in cortical structure and function also observed in mood disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly during development, in the pathophysiology of mood dysregulation, and support implementation of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders.
Collapse
|
15
|
Scavuzzo CJ, Moulton CJ, Larsen RJ. The use of magnetic resonance spectroscopy for assessing the effect of diet on cognition. Nutr Neurosci 2016; 21:1-15. [DOI: 10.1080/1028415x.2016.1218191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claire J. Scavuzzo
- Neuroscience Program, University of Illinois at Urbana-Champaign, USA
- Department of Psychology, University of Alberta, Edmonton, Canada
| | | | - Ryan J. Larsen
- Biomedical Imaging Center, Beckman Institute, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
16
|
Docosahexaenoic Acid Rescues Synaptogenesis Impairment and Long-Term Memory Deficits Caused by Postnatal Multiple Sevoflurane Exposures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4062579. [PMID: 27597963 PMCID: PMC4997086 DOI: 10.1155/2016/4062579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 02/02/2023]
Abstract
Sevoflurane exposures were demonstrated to induce neurotoxicity in the developing brain in both human and animal studies. However, there is no effective approach to reverse it. The present study aimed to evaluate the feasibility of utilizing docosahexaenoic acid (DHA) to prevent sevoflurane-induced neurotoxicity. P6 (postnatal 6 days) mice were administrated DHA after exposure to 3% sevoflurane for two hours daily in three consecutive days. Molecular expressions of synaptic makers (PSD95, synaptophysin) and synaptic morphological changes were investigated by Western blot analysis and transmission electron microscopy, respectively. Meanwhile, Morris water maze test was used to assess spatial memory of mice at P31 (postnatal 31 days). DHA restored sevoflurane-induced decreased level of PSD95 and synaptophysin expressions and increased PSD areas and also improved long-term spatial memory. These results suggest that DHA could rescue synaptogenesis impairment and long-term memory deficits in postnatal caused by multiple sevoflurane exposures.
Collapse
|
17
|
McNamara RK. Role of Omega-3 Fatty Acids in the Etiology, Treatment, and Prevention of Depression: Current Status and Future Directions. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016; 5:96-106. [PMID: 27766299 DOI: 10.1016/j.jnim.2016.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over the past three decades a body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of major depressive disorder (MDD). Cross-national and cross-sectional data suggest that greater habitual intake of preformed EPA+DHA is associated with reduced risk for developing depressive symptoms and syndromal MDD. Erythrocyte EPA and DHA composition is highly correlated with habitual fish or fish oil intake, and case-control studies have consistently observed lower erythrocyte EPA and/or DHA levels in patients with MDD. Low erythrocyte EPA+DHA composition may also be associated with increased risk for suicide and cardiovascular disease, two primary causes of excess premature mortality in MDD. While controversial, dietary EPA+DHA supplementation may have antidepressant properties and may augment the therapeutic efficacy of antidepressant medications. Neuroimaging and rodent neurodevelopmental studies further suggest that low LCn-3 fatty acid intake or biostatus can recapitulate central pathophysiological features associated with MDD. Prospective findings suggest that low LCn-3 fatty acid biostatus increases risk for depressive symptoms in part by augmenting pro-inflammatory responsivity. When taken collectively, these translational findings provide a strong empirical foundation in support of dietary LCn-3 fatty acid deficiency as a modifiable risk factor for MDD. This review provides an overview of this translational evidence and then discusses future directions including strategies to translate this evidence into routine clinical screening and treatment algorithms.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0516
| |
Collapse
|
18
|
Messamore E, McNamara RK. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: Rationale and implementation. Lipids Health Dis 2016; 15:25. [PMID: 26860589 PMCID: PMC4748485 DOI: 10.1186/s12944-016-0196-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/04/2016] [Indexed: 11/10/2022] Open
Abstract
A body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and potentially etiology of different psychiatric disorders. Case–control studies have consistently observed low erythrocyte (red blood cell) EPA and/or DHA levels in patients with major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Low erythrocyte EPA + DHA biostatus can be treated with fish oil-based formulations containing preformed EPA + DHA, and extant evidence suggests that fish oil supplementation is safe and well-tolerated and may have therapeutic benefits. These and other data provide a rationale for screening for and treating LCn-3 fatty acid deficiency in patients with psychiatric illness. To this end, we have implemented a pilot program that routinely measures blood fatty acid levels in psychiatric patients entering a residential inpatient clinic. To date over 130 blood samples, primarily from patients with treatment-refractory mood or anxiety disorders, have been collected and analyzed. Our initial results indicate that the majority (75 %) of patients exhibit whole blood EPA + DHA levels at ≤4 percent of total fatty acid composition, a rate that is significantly higher than general population norms (25 %). In a sub-set of cases, corrective treatment with fish oil-based products has resulted in improvements in psychiatric symptoms without notable side effects. In view of the urgent need for improvements in conventional treatment algorithms, these preliminary findings provide important support for expanding this approach in routine psychiatric practice.
Collapse
Affiliation(s)
- Erik Messamore
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Rm. 3306, Cincinnati, OH, 45218-0516, USA.,Lindner Center of HOPE, Mason, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, 260 Stetson Street, Rm. 3306, Cincinnati, OH, 45218-0516, USA.
| |
Collapse
|
19
|
Moneim AEA. Oxidant/Antioxidant imbalance and the risk of Alzheimer's disease. Curr Alzheimer Res 2016; 12:335-49. [PMID: 25817254 PMCID: PMC5384363 DOI: 10.2174/1567205012666150325182702] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress-induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize.
Collapse
Affiliation(s)
- Ahmed E Abdel Moneim
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, 18100 Armilla, Granada, Spain.
| |
Collapse
|
20
|
Samaddar S. Effect of Docosahexaenoic Acid (DHA) on Spinal Cord Injury. ADVANCES IN NEUROBIOLOGY 2016; 12:27-39. [DOI: 10.1007/978-3-319-28383-8_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Kern JK, Geier DA, Sykes LK, Geier MR, Deth RC. Are ASD and ADHD a Continuum? A Comparison of Pathophysiological Similarities Between the Disorders. J Atten Disord 2015; 19:805-27. [PMID: 23074304 DOI: 10.1177/1087054712459886] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The objective of this study was to review and compare the similarities between autism spectrum disorder (ASD) and ADHD with regard to symptomatology, neurological deficits, metabolic and endocrine-related conditions, and brain pathology. METHOD A comprehensive review of the relevant research literature was carried out. RESULTS A number of important similarities between ASD and ADHD were identified, including recent increases in prevalence, male-biased incidence, shared involvement of sensory processing, motor and impulse control, abnormal patterns of neural connectivity, and sleep disturbances. Studies suggest involvement of androgen metabolism, impaired methylation, and heavy metal toxicity as possible contributing factors for both disorders. CONCLUSION ASD and ADHD share a number of features and pathophysiological conditions, which suggests that the two disorders may be a continuum and have a common origin.
Collapse
Affiliation(s)
- Janet K Kern
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA
| | | | | | | |
Collapse
|
22
|
Cortie CH, Hulbert AJ, Hancock SE, Mitchell TW, McAndrew D, Else PL. Of mice, pigs and humans: An analysis of mitochondrial phospholipids from mammals with very different maximal lifespans. Exp Gerontol 2015; 70:135-43. [PMID: 26315290 DOI: 10.1016/j.exger.2015.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
The maximal lifespan (MLS) of mammals is inversely correlated with the peroxidation index, a measure of the proportion and level of unsaturation of polyunsaturated fatty acids (PUFA) in membranes. This relationship is likely related to the fact that PUFA are highly susceptible to damage by peroxidation. Previous comparative work has examined membrane composition at the level of fatty acids, and relatively little is known regarding the distribution of PUFA across phospholipid classes or phospholipid molecules. In addition, data for humans is extremely rare in this area. Here we present the first shotgun lipidomics analysis of mitochondrial membranes and the peroxidation index of skeletal muscle, liver, and brain in three mammals that span the range of mammalian longevity. The species compared were mice (MLS of 4 years), pigs (MLS of 27 years), and humans (MLS of 122 years). Mouse mitochondria contained highly unsaturated PUFA in all phospholipid classes. Human mitochondria had lower PUFA content and a lower degree of unsaturation of PUFA. Pig mitochondria shared characteristics of both mice and humans. We found that membrane susceptibility to peroxidation was primarily determined by a limited number of phospholipid molecules that differed between both tissues and species.
Collapse
Affiliation(s)
- Colin H Cortie
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Anthony J Hulbert
- School of Biology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Sarah E Hancock
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W Mitchell
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Darryl McAndrew
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul L Else
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
23
|
German OL, Agnolazza DL, Politi LE, Rotstein NP. Light, lipids and photoreceptor survival: live or let die? Photochem Photobiol Sci 2015. [PMID: 26204250 DOI: 10.1039/c5pp00194c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.
Collapse
Affiliation(s)
- Olga Lorena German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
24
|
Fuchs B. Analytical methods for (oxidized) plasmalogens: Methodological aspects and applications. Free Radic Res 2015; 49:599-617. [DOI: 10.3109/10715762.2014.999675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Abdel-Wahab BA, Al-Qahtani JM, El-Safty SA. Omega-3 polyunsaturated fatty acids in large doses attenuate seizures, cognitive impairment, and hippocampal oxidative DNA damage in young kindled rats. Neurosci Lett 2015; 584:173-7. [DOI: 10.1016/j.neulet.2014.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
|
26
|
Erythrocyte phospholipid molecular species and fatty acids of Down syndrome children compared with non-affected siblings. Br J Nutr 2014; 113:72-81. [DOI: 10.1017/s0007114514003298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The majority of children with Down syndrome (DS) develop Alzheimer's disease (AD) at an early age. Although long-chainn-3 fatty acids (FA) are protective of neurodegeneration, little is known about the FA status in DS. In the present study, we aimed to investigate whether children with DS presented altered plasma and erythrocyte membrane phospholipids (PL) FA composition, when compared with their non-affected siblings. Venous blood samples were analysed for plasma and erythrocyte membrane FA composition by TLC followed by GC techniques. Lipid molecular species were determined by electrospray ionisation/tandem MS (ESI-MS/MS). FA analysis measured by standard GC showed an increased concentration of MUFA and a decreased concentration of plasmalogens in major PL fractions, but there were no differences in the concentrations of arachidonic acid or DHA. However, as identified by ESI-MS/MS, children with DS had increased levels of the following erythrocyte PL molecular species: 16 : 0–16 : 0, 16 : 0–18 : 1 and 16 : 0–18 : 2n-6, with reduced levels of 16 : 0–20 : 4n-6 species. Children with DS presented significantly higher levels of MUFA in both plasma and erythrocyte membrane, as well as higher levels of saturated and monounsaturated molecular species. Of interest was the almost double proportion of 16 : 0–18 : 2n-6 and nearly half the proportion of 16 : 0–20 : 4n-6 of choline phosphoacylglycerol species in children with DS compared with their non-affected siblings. These significant differences were only revealed by ESI-MS/MS and were not observed in the GC analysis. Further investigations are needed to explore molecular mechanisms and to test the association between the pathophysiology of DS and the risk of AD.
Collapse
|
27
|
de Mello AH, Gassenferth A, Schraiber RDB, Souza LDR, Florentino D, Danielski LG, Cittadin-Soares EDC, Fortunato JJ, Petronilho F, Quevedo J, Rezin GT. Effects of omega-3 on behavioral and biochemical parameters in rats submitted to chronic mild stress. Metab Brain Dis 2014; 29:691-9. [PMID: 24964972 DOI: 10.1007/s11011-014-9577-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
Major depression is a heterogeneous psychiatric disorder whose pathophysiology is not clearly established yet. Some studies have shown that oxidative stress and mitochondrial dysfunction are involved in the development of major depression. Since most depressed patients do not achieve complete remission of symptoms, new therapeutic alternatives are needed and omega-3 has been highlighted in this scenario. Therefore, we have investigated the effects of omega-3 on behavioral and biochemical parameters in rats submitted to chronic mild stress (CMS). Male Wistar rats were submitted to CMS for 40 days. After the CMS period, we administered a 500 mg/kg dose of omega-3 orally, once a day, for 7 days. The animals submitted to CMS presented anhedonia, had no significant weight gain, presented increased levels of lipid peroxidation and protein carbonylation, and inhibition of complex I and IV activities of the mitochondrial respiratory chain. The treatment with omega-3 did not reverse anhedonia; however, it reversed weight change, increased lipid peroxidation and protein carbonylation levels, and partially reversed the inhibition of mitochondrial respiratory chain complexes. The findings support studies that state that major depression is associated with mitochondrial dysfunction and oxidative stress, and that omega-3 supplementation could reverse some of these changes, probably due to its antioxidant properties.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, 88704-900, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hughbanks-Wheaton DK, Birch DG, Fish GE, Spencer R, Pearson NS, Takacs A, Hoffman DR. Safety assessment of docosahexaenoic acid in X-linked retinitis pigmentosa: the 4-year DHAX trial. Invest Ophthalmol Vis Sci 2014; 55:4958-66. [PMID: 25015354 DOI: 10.1167/iovs.14-14437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Docosahexaenoic acid (DHA) continues to be evaluated and recommended as treatment and prophylaxis for various diseases. We recently assessed efficacy of high-dose DHA supplementation to slow vision loss in patients with X-linked retinitis pigmentosa (XLRP) in a randomized clinical trial. Because DHA is a highly unsaturated fatty acid, it could serve as a target for free-radical induced oxidation, resulting in increased oxidative stress. Biosafety was monitored during the 4-year trial to determine whether DHA supplementation was associated with identifiable risks. METHODS Males (n = 78; 7-31 years) meeting entry criteria were enrolled. The modified intent-to-treat cohort (DHA = 33; placebo = 27) adhered to the protocol ≥ 1 year. Participants were randomized to an oral dose of 30 mg/kg/d DHA or placebo plus a daily multivitamin. Comprehensive metabolic analyses were assessed for group differences. Treatment-emergent adverse events including blood chemistry metabolites were recorded. RESULTS By year 4, supplementation elevated plasma and red blood cell-DHA 4.4- and 3.6-fold, respectively, compared with the placebo group (P < 0.00001). Over the trial duration, no significant differences between DHA and placebo groups were found for vitamin A, vitamin E, platelet aggregation, antioxidant activity, lipoprotein cholesterol, or oxidized LDL levels (all P > 0.14). Adverse events were transient and not considered severe (e.g., gastrointestinal [GI] irritability, blood chemistry alterations). One participant was unable to tolerate persistent GI discomfort. CONCLUSIONS Long-term, high-dose DHA supplementation to patients with XLRP was associated with limited safety risks in this 4-year trial. Nevertheless, GI symptoms should be monitored in all patients taking high dose DHA especially those with personal or family history of GI disturbances. (ClinicalTrials.gov number, NCT00100230.).
Collapse
Affiliation(s)
- Dianna K Hughbanks-Wheaton
- Retina Foundation of the Southwest, Dallas, Texas, United States Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, United States Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Gary E Fish
- Texas Retina Associates, Dallas, Texas, United States
| | - Rand Spencer
- Texas Retina Associates, Dallas, Texas, United States
| | - N Shirlene Pearson
- Pearson Statistical Consulting & Expert Testimony, Richardson, Texas, United States
| | - Alison Takacs
- Retina Foundation of the Southwest, Dallas, Texas, United States
| | - Dennis R Hoffman
- Retina Foundation of the Southwest, Dallas, Texas, United States Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
29
|
iPLA2β knockout mouse, a genetic model for progressive human motor disorders, develops age-related neuropathology. Neurochem Res 2014; 39:1522-32. [PMID: 24919816 DOI: 10.1007/s11064-014-1342-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/23/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
Abstract
Calcium-independent phospholipase A2 group VIa (iPLA2β) preferentially releases docosahexaenoic acid (DHA) from the sn-2 position of phospholipids. Mutations of its gene, PLA2G6, are found in patients with several progressive motor disorders, including Parkinson disease. At 4 months, PLA2G6 knockout mice (iPLA2β(-/-)) show minimal neuropathology but altered brain DHA metabolism. By 1 year, they develop motor disturbances, cerebellar neuronal loss, and striatal α-synuclein accumulation. We hypothesized that older iPLA2β(-/-) mice also would exhibit inflammatory and other neuropathological changes. Real-time polymerase chain reaction and Western blotting were performed on whole brain homogenate from 15 to 20-month old male iPLA2β(-/-) or wild-type (WT) mice. These older iPLA2β(-/-) mice compared with WT showed molecular evidence of microglial (CD-11b, iNOS) and astrocytic (glial fibrillary acidic protein) activation, disturbed expression of enzymes involved in arachidonic acid metabolism, loss of neuroprotective brain derived neurotrophic factor, and accumulation of cytokine TNF-α messenger ribonucleic acid, consistent with neuroinflammatory pathology. There was no evidence of synaptic loss, of reduced expression of dopamine active reuptake transporter, or of accumulation of the Parkinson disease markers Parkin or Pink1. iPLA2γ expression was unchanged. iPLA2β deficient mice show evidence of neuroinflammation and associated neuropathology with motor dysfunction in later life. These pathological biomarkers could be used to assess efficacy of dietary intervention, antioxidants or other therapies on disease progression in this mouse model of progressive human motor diseases associated with a PLA2G6 mutation.
Collapse
|
30
|
Ganesan B, Brothersen C, McMahon DJ. Fortification of foods with omega-3 polyunsaturated fatty acids. Crit Rev Food Sci Nutr 2014; 54:98-114. [PMID: 24188235 DOI: 10.1080/10408398.2011.578221] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA) consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements. Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable. This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative compounds to reduce and eventually eliminate fishy flavor is important for consumer acceptance of PUFA-fortified foods.
Collapse
Affiliation(s)
- Balasubramanian Ganesan
- a Western Dairy Center, Department of Nutrition, Dietetics, and Food Sciences , Utah State University , Logan , UT , 84322 , USA
| | | | | |
Collapse
|
31
|
Munro D, Blier PU. Age, Diet, and Season Do Not Affect Longevity-Related Differences in Peroxidation Index Between Spisula solidissima and Arctica islandica. ACTA ACUST UNITED AC 2014; 70:434-43. [DOI: 10.1093/gerona/glu054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
32
|
Jensen N, Oliveira JRM. Basal ganglia vulnerability to oxidative stress. Front Neurosci 2014; 8:80. [PMID: 24795555 PMCID: PMC4001021 DOI: 10.3389/fnins.2014.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nina Jensen
- Department of Clinical Medicine, Aarhus University Aarhus, Denmark ; Department of Molecular Biology and Genetics, Aarhus University Aarhus, Denmark
| | - João R M Oliveira
- Keizo Asami Laboratory, Department of Neuropsychiatry, Federal University of Pernambuco Recife, Pernambuco, Brazil
| |
Collapse
|
33
|
Giordano E, Visioli F. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions. Prostaglandins Leukot Essent Fatty Acids 2014; 90:1-4. [PMID: 24345866 DOI: 10.1016/j.plefa.2013.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/20/2022]
Abstract
Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease.
Collapse
Affiliation(s)
- Elena Giordano
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain.
| |
Collapse
|
34
|
Chaudhary M, Joshi DK, Tripathi S, Kulshrestha S, Mahdi AA. Docosahexaenoic acid ameliorates aluminum induced biochemical and morphological alteration in rat cerebellum. Ann Neurosci 2014; 21:5-9. [PMID: 25206046 PMCID: PMC4117144 DOI: 10.5214/ans.0972.7531.210103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/29/2013] [Accepted: 01/08/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The omega-3 polyunsaturated fatty acids (PUFA), docosahexaenoic acid (DHA) have well-characterized effects on inflammation and oxidative stress and may have neuroprotective effects in a number of neurodegenerative conditions including AD. Brain tissue contains large amounts of polyunsaturated fatty acids, which are particularly vulnerable to free radical injury. PURPOSE The present study attempts to examine protective effects of docosahexaenoic acid (100 mg/kg body weight) and on aluminum (100 mg/kg b. wt. of AlCl3) mediated oxidative damage in the cerebellum in male albino rats along with the motor and learning ability and morphological changes. METHODS Twenty four male Rattusnorigious, Wistar strain rats (weight 220 ± 10 grams) were randomly divided into four groups (n = 12) viz. Group 1 served as control treated with normal saline, Group 2 treated with 100mg/kg body weight of DHA, Group three treated with 100 mg/kg body weight of AlCl3 and Group four treated with 100mg AlCl3 + 100 mg DHA for 90 days. Dose was directly introduced into the rat pharynx via a feeding cannula to rats for 90 days. Behavioral tests followed by biochemical analysis was performed. RESULTS A significant decrease in the antioxidant status (superoxide dismutase, catalase, glutathione peroxidase and glutathione) and increased lipid peroxide levels and protein carbonyl content in aluminum exposed rats was noted. After DHA supplementation these effects were reversed. Moreover, DHA also significantly (p<0.05) prevented aluminum induced dysfunctioning of the motor and learning ability. The light microscopic studies revealed altered Purkinje's neurons and granular layer. These changes were not seen in the DHA treated rats. CONCLUSION On the basis of our results it may be concluded that Al may be linked with cerebellar degeneration and neuromuscular disorders while DHA helps to prevent these alterations.
Collapse
Affiliation(s)
- Manisha Chaudhary
- Departments of Advance Sciences, NIMS Institute of Engineering and Technology
| | - Devesh K Joshi
- Departments of Advance Sciences, NIMS Institute of Engineering and Technology
| | - Sandeep Tripathi
- Departments of Advance Sciences, NIMS Institute of Engineering and Technology
| | - Shobha Kulshrestha
- Department of Pharmacology, NIMS Medical College, NIMS University, Jaipur India
| | - Abbas A Mahdi
- Department of Biochemistry, King George’s Medical University, Lucknow INDIA
| |
Collapse
|
35
|
Loef M, Walach H. The omega-6/omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence. J Nutr Gerontol Geriatr 2013; 32:1-23. [PMID: 23451843 DOI: 10.1080/21551197.2012.752335] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It has been suggested that the intake of certain fatty acids may influence the risk of dementia. However, current reviews have focused only on the therapeutic effects of omega-3 fatty acids, mostly as supplements. To date, the evidence for the relevance of the omega-6/omega-3 ratio has been neglected. Therefore, we searched the databases Alois, Medline, Biosis, Embase, Cochrane Central Register of Controlled Trials, and The Cochrane Database of Systematic Reviews for "essential fatty acids" and "dementia" and aimed to conduct a comprehensive review across study types. All studies that reported on the association between the n-6/n-3 ratio and dementia or cognitive decline were selected. In the 13 animal studies we examined, the dietary n-6/n-3 ratio was shown to affect brain composition, Alzheimer's disease pathology, and behavior. Our review of the 14 studies in humans that fulfilled the selection criteria (7 prospective studies, 3 cross-sectional studies, 1 controlled trial, 3 case-control studies) provided evidence, albeit limited, supporting an association between the n-6/n-3 ratio, cognitive decline, and incidence of dementia. This review supports growing evidence of a positive association between the dietary n-6/n-3 ratio and the risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Martin Loef
- Institute of Transcultural Health Studies, European University Viadrina, Frankfurt (Oder), Germany
| | | |
Collapse
|
36
|
Satkunendrarajah K, Fehlings MG. Do omega-3 polyunsaturated fatty acids ameliorate spinal cord injury? Exp Neurol 2013; 249:104-10. [DOI: 10.1016/j.expneurol.2013.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 12/13/2022]
|
37
|
Lipinski B, Pretorius E. The role of iron-induced fibrin in the pathogenesis of Alzheimer's disease and the protective role of magnesium. Front Hum Neurosci 2013; 7:735. [PMID: 24194714 PMCID: PMC3810650 DOI: 10.3389/fnhum.2013.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022] Open
Abstract
Amyloid hypothesis of Alzheimer's disease (AD) has recently been challenged by the increasing evidence for the role of vascular and hemostatic components that impair oxygen delivery to the brain. One such component is fibrin clots, which, when they become resistant to thrombolysis, can cause chronic inflammation. It is not known, however, why some cerebral thrombi are resistant to the fibrinolytic degradation, whereas fibrin clots formed at the site of vessel wall injuries are completely, although gradually, removed to ensure proper wound healing. This phenomenon can now be explained in terms of the iron-induced free radicals that generate fibrin-like polymers remarkably resistant to the proteolytic degradation. It should be noted that similar insoluble deposits are present in AD brains in the form of aggregates with Abeta peptides that are resistant to fibrinolytic degradation. In addition, iron-induced fibrin fibers can irreversibly trap red blood cells (RBCs) and in this way obstruct oxygen delivery to the brain and induce chronic hypoxia that may contribute to AD. The RBC-fibrin aggregates can be disaggregated by magnesium ions and can also be prevented by certain polyphenols that are known to have beneficial effects in AD. In conclusion, we argue that AD can be prevented by: (1) limiting the dietary supply of trivalent iron contained in red and processed meat; (2) increasing the intake of chlorophyll-derived magnesium; and (3) consumption of foods rich in polyphenolic substances and certain aliphatic and aromatic unsaturated compounds. These dietary components are present in the Mediterranean diet known to be associated with the lower incidence of AD and other degenerative diseases.
Collapse
|
38
|
Nielsen FH, Penland JG. Boron deprivation alters rat behaviour and brain mineral composition differently when fish oil instead of safflower oil is the diet fat source*. Nutr Neurosci 2013; 9:105-12. [PMID: 16910176 DOI: 10.1080/10284150600772189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PRIMARY OBJECTIVE To determine whether boron deprivation affects rat behaviour and whether behavioural responses to boron deprivation are modified by differing amounts of dietary long-chain omega-3 fatty acids. RESEARCH DESIGN Female rats were fed diets containing 0.1 mg (9 micromol)/kg boron in a factorial arrangement with dietary variables of supplemental boron at 0 and 3mg (278 micromol)/kg and fat sources of 75 g/kg safflower oil or 65 g/kg fish (menhaden) oil plus 10 g/kg linoleic acid. After 6 weeks, six females per treatment were bred. Dams and pups continued on their respective diets through gestation, lactation and after weaning. Between ages 6 and 20 weeks, behavioural tests were performed on 13-15 male offspring from three dams in each dietary treatment. The rats were euthanized at age 21 weeks for the collection of tissues and blood. METHODS AND PROCEDURES At ages 6 and 19 weeks, auditory startle was evaluated with an acoustic startle system and avoidance behaviour was evaluated by using an elevated plus maze. At ages 7 and 20 weeks, spontaneous behaviour activity was evaluated with a photobeam activity system. A brightness discrimination test was performed on the rats between age 15 and 16 weeks. Brain mineral composition was determined by coupled argon plasma atomic emission spectroscopy. Plasma total glutathione was determined by HPLC and total cholesterol and 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) were determined by using commercially available kits. MAIN OUTCOMES AND RESULTS Boron-deficient rats were less active than boron-adequate rats when fed safflower oil based on reduced number, distance and time of horizontal movements, front entries, margin distance and vertical breaks and jumps in the spontaneous activity evaluation. Feeding fish oil instead of safflower oil attenuated the activity response to boron deprivation. In the plus maze evaluation, the behavioural reactivity of the boron-deficient rats fed fish oil was noticeably different than the other three treatments. They made more entries into both open and closed arms and the center area and thus visited more locations. The boron-deficient rats fed fish oil also exhibited the lowest copper and zinc and highest boron concentrations in brain and the highest plasma glutathione concentration. Both boron deprivation and safflower oil increased plasma 8-iso-PGF2alpha. CONCLUSIONS Both dietary boron and long-chain omega-3 fatty acids influence rat behaviour and brain composition and the influence of one these bioactive substances can be altered by changing the intake of the other. Brain mineral and plasma cholesterol, glutathione and 8-iso-PGF2alpha findings suggest that rat behaviour is affected by an interaction between boron and fish oil because both affect oxidative metabolism and act the cellular membrane level.
Collapse
Affiliation(s)
- Forrest H Nielsen
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202-9034, USA.
| | | |
Collapse
|
39
|
Barry DS, O'Keeffe GW. Peroxisomes: the neuropathological consequences of peroxisomal dysfunction in the developing brain. Int J Biochem Cell Biol 2013; 45:2012-5. [PMID: 23830890 DOI: 10.1016/j.biocel.2013.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/07/2013] [Accepted: 06/23/2013] [Indexed: 12/27/2022]
Abstract
Peroxisomes are intracellular organelles that perform vital metabolic functions. They have been extensively studied in the hepatic and renal systems, yet their pivotal roles in facilitating central nervous system patterning and in disease pathogenesis are only recently being firmly established by the neuroscience community. Peroxisomal functions including the break-down of long chain fatty acids, the removal of H2O2, and the biosynthesis of ether lipids. The build up of long chain fatty acids and H2O2 is detrimental to cellular function, and ether lipids play roles in maintaining cell membrane structure. These findings have major implications for treatments for the full spectrum of peroxisomal disorders. Here, we provide a timely review highlighting the most important data in recent times linking peroxisomal functions to brain formation, and we describe how peroxisomal deficiency and pathway dysfunction results in neurological deficits, the more severe of which result in life changing disabilities and death.
Collapse
Affiliation(s)
- Denis S Barry
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
40
|
Lawrence GD. Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv Nutr 2013; 4:294-302. [PMID: 23674795 PMCID: PMC3650498 DOI: 10.3945/an.113.003657] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although early studies showed that saturated fat diets with very low levels of PUFAs increase serum cholesterol, whereas other studies showed high serum cholesterol increased the risk of coronary artery disease (CAD), the evidence of dietary saturated fats increasing CAD or causing premature death was weak. Over the years, data revealed that dietary saturated fatty acids (SFAs) are not associated with CAD and other adverse health effects or at worst are weakly associated in some analyses when other contributing factors may be overlooked. Several recent analyses indicate that SFAs, particularly in dairy products and coconut oil, can improve health. The evidence of ω6 polyunsaturated fatty acids (PUFAs) promoting inflammation and augmenting many diseases continues to grow, whereas ω3 PUFAs seem to counter these adverse effects. The replacement of saturated fats in the diet with carbohydrates, especially sugars, has resulted in increased obesity and its associated health complications. Well-established mechanisms have been proposed for the adverse health effects of some alternative or replacement nutrients, such as simple carbohydrates and PUFAs. The focus on dietary manipulation of serum cholesterol may be moot in view of numerous other factors that increase the risk of heart disease. The adverse health effects that have been associated with saturated fats in the past are most likely due to factors other than SFAs, which are discussed here. This review calls for a rational reevaluation of existing dietary recommendations that focus on minimizing dietary SFAs, for which mechanisms for adverse health effects are lacking.
Collapse
|
41
|
Perturbations in blood phosphatidylcholine and sphingomyelin Fatty Acid composition in a sample population of cigarette smokers. Indian J Clin Biochem 2013; 28:361-7. [PMID: 24426238 DOI: 10.1007/s12291-013-0327-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/03/2012] [Indexed: 02/07/2023]
Abstract
Docosahexaenoic (DHA) and arachidonic acids (AA) are polyunsaturated fatty acids (PUFAs), major components of brain tissue and neural systems, and the precursors of a number of biologically active metabolites with functions in inflammation resolution, neuroprotection and other actions. As PUFAs are highly susceptible to peroxidation, we hypothesised whether cigarette smokers would present altered PUFAs levels in plasma and erythrocyte phospholipids. Adult males from Indian, Sri-Lankan or Bangladeshi genetic backgrounds who reported smoking between 20 and 60 cigarettes per week were recruited. The control group consisted of matched non-smokers. A blood sample was taken, plasma and erythrocyte total lipids were extracted, phospholipids were separated by thin layer chromatography, and the fatty acid content analysed by gas chromatography. In smokers, dihomo-gamma-linolenic acid, the AA precursor, was significantly reduced in plasma and erythrocyte phosphatidylcholine. AA and DHA were significantly reduced in erythrocyte sphingomyelin. Relatively short term smoking has affected the fatty acid composition of plasma and erythrocyte phospholipids with functions in neural tissue composition, cell signalling, cell growth, intracellular trafficking, neuroprotection and inflammation, in a relatively young population. As lipid peroxidation is pivotal in the pathogenesis of atherosclerosis and neurodegenerative diseases such as Alzheimer disease, early effects of smoking may be relevant for the development of such conditions.
Collapse
|
42
|
Docosahexaenoic acid and tetracyclines as promising neuroprotective compounds with poly(ADP-ribose) polymerase inhibitory activities for oxidative/genotoxic stress treatment. Neurochem Int 2013; 62:626-36. [PMID: 23439385 DOI: 10.1016/j.neuint.2013.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 02/07/2013] [Accepted: 02/13/2013] [Indexed: 11/24/2022]
Abstract
The human genome is exposed to oxidative/genotoxic stress by several endogenous and exogenous compounds. These events evoke DNA damage and activate poly(ADP-ribose) polymerase-1 (PARP-1), the key enzyme involved in DNA repair. The massive stress and over-activation of this DNA-bound enzyme can be responsible for an energy crisis and neuronal death. The last data indicated that product of PARP-1, i.e. poly(ADP-ribose) (PAR), acts as a signalling molecule and plays a significant role in nucleus-mitochondria cross-talk. PAR translocated to the mitochondria can be involved in mitochondrial permeability, the release of an apoptosis-inducing factor (AIF). Its translocation into the nucleus leads to chromatin condensation, fragmentation and cell death. The exact mechanism of this novel death pathway has not yet fully been understood. In this study the relationship between AIF and PARP/PAR in death signalling in the neuronal cell line (HT22) subjected to oxidative/genotoxic stress evoked by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was explored. The neuroprotective influence of docosahexaenoic acid (DHA), major dietary ω-3 long-chain polyunsaturated fatty acids as well as the action of tetracyclines, the novel suppressors of PARP-1, were examined. The effect of these all compounds was compared with specific PARP-1 inhibitors. The oxidative/genotoxic stress evoked by MNNG enhanced the level of PAR in a time-dependent manner with a concomitant significant decrease in the mitochondrial AIF protein level. Moreover, the down-regulation of the anti-apoptotic proteins (Bcl-2 and Bcl-xL) and the up-regulation of the Bax pro-apoptotic protein were presented. In these conditions massive HT22 cell death was observed. Both PARP-1 inhibitors: 3-aminobenzamide (3-AB) and PJ 34, tetracycline: doxocycline and minocycline, as well as DHA protected the cells against PAR formation and AIF translocation. Moreover, all of these compounds enhanced Bcl-xL gene expression and protected the cells against MNNG-induced death. Our data show that both DHA and tetracyclines offer a novel neuroprotective strategy for oxidative/genotoxic stress treatment.
Collapse
|
43
|
Munro D, Blier PU. The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell 2012; 11:845-55. [PMID: 22708840 DOI: 10.1111/j.1474-9726.2012.00847.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The deleterious reactive carbonyls released upon oxidation of polyunsaturated fatty acids in biological membranes are believed to foster cellular aging. Comparative studies in mammals and birds have shown that the susceptibility to peroxidation of membrane lipids peroxidation index (PI) is negatively correlated with longevity. Long-living marine molluscs are increasingly studied as longevity models, and the presence of different types of lipids in the membranes of these organisms raises questions on the existence of a PI-longevity relationship. We address this question by comparing the longest living metazoan species, the mud clam Arctica islandica (maximum reported longevity = 507 year) to four other sympatric bivalve molluscs greatly differing in longevity (28, 37, 92, and 106 year). We contrasted the acyl and alkenyl chain composition of phospholipids from the mitochondrial membranes of these species. The analysis was reproduced in parallel for a mix of other cell membranes to investigate whether a different PI-longevity relationship would be found. The mitochondrial membrane PI was found to have an exponential decrease with increasing longevity among species and is significantly lower for A. islandica. The PI of other cell membranes showed a linear decrease with increasing longevity among species and was also significantly lower for A. islandica. These results clearly demonstrate that the PI also decreases with increasing longevity in marine bivalves and that it decreases faster in the mitochondrial membrane than in other membranes in general. Furthermore, the particularly low PI values for A. islandica can partly explain this species' extreme longevity.
Collapse
Affiliation(s)
- Daniel Munro
- Biology Department, Université du Québec à Rimouski, Rimouski, QC, Canada G5L 3A1.
| | | |
Collapse
|
44
|
The role of long chain omega-3 polyunsaturated fatty acids in reducing lipid peroxidation among elderly patients with mild cognitive impairment: a case-control study. J Nutr Biochem 2012; 24:803-8. [PMID: 22898566 DOI: 10.1016/j.jnutbio.2012.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/24/2022]
Abstract
The present work explores the effect of dietary omega-3 polyunsaturated fatty acids (PUFAs) intake on lipid peroxidation among mild cognitive impairment (MCI) patients. The plasma lipid hydroperoxide (LPO) levels in 67 MCI patients were compared to those of 134 healthy elderly controls. Omega-3 PUFA intake was assessed using an interviewer-administered food frequency questionnaire. Apolipoprotein E genotyping was performed using polymerase chain reaction and restriction enzyme digestion. The association between various confounders and lipid peroxidation was evaluated using regression analysis. The influence of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) intake on LPO level was investigated. The results revealed that LPO levels were significantly higher in the MCI group than in the control group. Inverse correlations were found between DHA and EPA intake and LPO level among the MCI group. LPO levels decreased significantly with increasing DHA and EPA intake. In summary, the findings revealed that DHA and EPA can play a role in alleviating oxidative stress and reducing the risk of neurodegenerative diseases.
Collapse
|
45
|
Connor S, Tenorio G, Clandinin MT, Sauvé Y. DHA supplementation enhances high-frequency, stimulation-induced synaptic transmission in mouse hippocampus. Appl Physiol Nutr Metab 2012; 37:880-7. [PMID: 22716290 DOI: 10.1139/h2012-062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While some studies on dietary supplementation with docosahexaenoic acid (DHA, 22:6n-3) have reported a beneficial effect on memory as a function of age, others have failed to find any effect. To clarify this issue, we sought to determine whether supplementing mice with a DHA-enriched diet could alter the ability of synapses to undergo activity-dependent changes in the hippocampus, a brain structure involved in forming new spatial memories. We found that DHA was increased by 29% ± 5% (mean ± SE) in the hippocampus for the supplemented (DHA+) versus nonsupplemented (control) group (n = 5 mice per group; p < 0.05). Such DHA elevation was associated with enhanced synaptic transmission (p < 0.05) as assessed by application of a high-frequency electrical stimulation protocol (100 Hz stimulation, which induced transient (<2 h) increases in synaptic strength) to slices from DHA+ (n = 4 mice) hippocampi when compared with controls (n = 4 mice). Increased synaptic responses were evident 60 min poststimulation. These results suggest that dietary DHA supplementation facilitates synaptic plasticity following brief high-frequency stimulation. This increase in synaptic transmission might provide a physiological correlation for the improved spatial learning and memory observed following DHA supplementation.
Collapse
Affiliation(s)
- Steve Connor
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
46
|
Garcia C, Lutz NW, Confort-Gouny S, Cozzone PJ, Armand M, Bernard M. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: towards specific interest in human health. Food Chem 2012; 135:1777-83. [PMID: 22953921 DOI: 10.1016/j.foodchem.2012.05.111] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/01/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Our objective was to identify and quantify phospholipids in milk from different species (human HM, cow CoM, camel CaM, and mare MM) using an optimised (31)P NMR spectroscopy procedure. The phospholipid fingerprints were species-specific with a broader variety of classes found in HM and MM; HM and CaM were richer in sphingomyelin (78.3 and 117.5μg/ml) and plasmalogens (27.3 and 24μg/ml), possibly important for infant development. Total phospholipid content was higher in CaM (0.503mM) and lower in MM (0.101mM) compared to HM (0.324mM) or CoM (0.265mM). Our optimised method showed good sensitivity, high resolution, and easy sample preparation with minimal loss of target molecules. It is suitable for determining the accurate composition of a large number of bioactive phospholipids with putative health benefits, including plasmalogens, and should aid in selecting appropriate ingredient sources for infant milk substitutes or fortifiers, and for functional foods dedicated to adults.
Collapse
|
47
|
Maintenance of synaptic stability requires calcium-independent phospholipase A₂ activity. Neural Plast 2012; 2012:569149. [PMID: 22685677 PMCID: PMC3364014 DOI: 10.1155/2012/569149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 12/31/2022] Open
Abstract
Phospholipases A₂ (PLA₂s) represent one of the largest groups of lipid-modifying enzymes. Over the years, significant advances have been made in understanding their potential physiological and pathological functions. Depending on their calcium requirement for activation, PLA₂s are classified into calcium dependent and independent. This paper mainly focuses on brain calcium-independent PLA₂ (iPLA₂) and on the mechanisms by which they influence neuronal function and regulate synaptic plasticity. Particular attention will be given to the iPLA₂γ isoform and its role in the regulation of synaptic glutamate receptors. In particular, the paper discusses the possibility that brain iPLA₂γ deficiencies could destabilise normal synaptic operation and might contribute to the aetiology of some brain disorders. In this line, the paper presents new data indicating that iPLA₂γ deficiencies accentuate AMPA receptor destabilization and tau phosphorylation, which suggests that this iPLA₂ isoform should be considered as a potential target for the treatment of Tau-related disorders.
Collapse
|
48
|
Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson's disease. Front Neurol 2011; 2:68. [PMID: 22125548 PMCID: PMC3221408 DOI: 10.3389/fneur.2011.00068] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/21/2011] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.
Collapse
Affiliation(s)
- Stacey E Seidl
- Department of Biological Sciences, DePaul University Chicago, IL, USA
| | | |
Collapse
|
49
|
Ozsoy O, Seval-Celik Y, Hacioglu G, Yargicoglu P, Demir R, Agar A, Aslan M. The influence and the mechanism of docosahexaenoic acid on a mouse model of Parkinson’s disease. Neurochem Int 2011; 59:664-70. [DOI: 10.1016/j.neuint.2011.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 05/23/2011] [Accepted: 06/18/2011] [Indexed: 01/19/2023]
|
50
|
French mothers' milk deficient in DHA contains phospholipid species of potential interest for infant development. J Pediatr Gastroenterol Nutr 2011; 53:206-12. [PMID: 21788764 DOI: 10.1097/mpg.0b013e318216f1d0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES An insufficient human milk docosahexaenoic acid (DHA) level was reported worldwide, which leads to the question of the sufficiency of the DHA supply for infant development in the French Mediterranean area. Also, among milk lipids, phospholipids may be of high potential interest for infant brain development, being a specific vector of DHA and providing plasmalogens. We aimed to estimate the consumption of such milk compounds by preterm and term infants. MATERIALS AND METHODS Milk samples from 22 lactating French women living in a port city, Marseille, were collected in a neonatology department from a single full-breast expression using an electric pump. Amounts of triglycerides, total phospholipids and plasmalogens, and fatty acid profile were determined by gas chromatography, and cholesterol by enzymatic assay. RESULTS Depending on the infant dietary guidelines we referred to, 46% or 82% of milk samples were below the recommended DHA level (0.4% or 0.7%), and a majority exhibited high linoleic acid/α-linolenic acid and n-6/n-3 ratios, probably resulting from high linoleic acid together with low fish and seafood products consumption. DHA carried by phospholipids in a majority of specimens met the requirements for brain development for term but not for premature infants. Milk plasmalogen levels ranged from 3.4 to 39.2 mg/L. CONCLUSIONS Our results support the recommendation of DHA supplementation to French mothers living in a Mediterranean port city, and of decreased linoleic acid intake, to reach optimal milk composition for infant health. DHA-containing phospholipids including plasmalogen species may represent important bioactive human milk compounds.
Collapse
|