1
|
Man JHK, Zarekiani P, Mosen P, de Kok M, Debets DO, Breur M, Altelaar M, van der Knaap MS, Bugiani M. Proteomic dissection of vanishing white matter pathogenesis. Cell Mol Life Sci 2024; 81:234. [PMID: 38789799 PMCID: PMC11126554 DOI: 10.1007/s00018-024-05258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024]
Abstract
Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. To date, it remains unclear which factors contribute to VWM pathogenesis. Here, we investigated the basis of VWM pathogenesis using the 2b5ho mouse model. We first mapped the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild-type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we showed that the proteome in the cerebellum and cortex of 2b5ho mice was already dysregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after pathology onset. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region. Importantly, 2b5ho mouse brain proteome changes reflect features well-known in VWM. Comparison of the 2b5ho mouse and VWM patient brain proteomes revealed shared changes. These could represent changes that contribute to the disease or even drive its progression in patients. Taken together, we show that the 2b5ho mouse brain proteome is affected in a region- and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, providing a resource to study aspects of VWM pathogenesis by highlighting alterations from early to late disease stages, and those that possibly drive disease progression.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Parand Zarekiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Mosen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Mike de Kok
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Oudejans E, Witkamp D, Hu-A-Ng GV, Hoogterp L, van Rooijen-van Leeuwen G, Kruijff I, Schonewille P, Lalaoui El Mouttalibi Z, Bartelink I, van der Knaap MS, Abbink TE. Pridopidine subtly ameliorates motor skills in a mouse model for vanishing white matter. Life Sci Alliance 2024; 7:e202302199. [PMID: 38171595 PMCID: PMC10765115 DOI: 10.26508/lsa.202302199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The leukodystrophy vanishing white matter (VWM) is characterized by chronic and episodic acute neurological deterioration. Curative treatment is presently unavailable. Pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B) cause VWM and deregulate the integrated stress response (ISR). Previous studies in VWM mouse models showed that several ISR-targeting compounds ameliorate clinical and neuropathological disease hallmarks. It is unclear which ISR components are suitable therapeutic targets. In this study, effects of 4-phenylbutyric acid, tauroursodeoxycholic acid, or pridopidine (PDPD), with ISR targets upstream or downstream of eIF2B, were assessed in VWM mice. In addition, it was found that the composite ataxia score represented motor decline of VWM mice more accurately than the previously used neuroscore. 4-phenylbutyric acid and tauroursodeoxycholic acid did not improve VWM disease hallmarks, whereas PDPD had subtle beneficial effects on motor skills. PDPD alone does not suffice as treatment in VWM mice but may be considered for combination therapy. Also, treatments aimed at ISR components upstream of eIF2B do not improve chronic neurological deterioration; effects on acute episodic decline remain to be investigated.
Collapse
Affiliation(s)
- Ellen Oudejans
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Diede Witkamp
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gino V Hu-A-Ng
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Leoni Hoogterp
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gemma van Rooijen-van Leeuwen
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Iris Kruijff
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Pleun Schonewille
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Zeinab Lalaoui El Mouttalibi
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Imke Bartelink
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Truus Em Abbink
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| |
Collapse
|
3
|
Man JHK, van Gelder CAGH, Breur M, Molenaar D, Abbink T, Altelaar M, Bugiani M, van der Knaap MS. Regional vulnerability of brain white matter in vanishing white matter. Acta Neuropathol Commun 2023; 11:103. [PMID: 37349783 PMCID: PMC10286497 DOI: 10.1186/s40478-023-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Vanishing white matter (VWM) is a leukodystrophy that primarily manifests in young children. In this disease, the brain white matter is differentially affected in a predictable pattern with telencephalic brain areas being most severely affected, while others remain allegedly completely spared. Using high-resolution mass spectrometry-based proteomics, we investigated the proteome patterns of the white matter in the severely affected frontal lobe and normal appearing pons in VWM and control cases to identify molecular bases underlying regional vulnerability. By comparing VWM patients to controls, we identified disease-specific proteome patterns. We showed substantial changes in both the VWM frontal and pons white matter at the protein level. Side-by-side comparison of brain region-specific proteome patterns further revealed regional differences. We found that different cell types were affected in the VWM frontal white matter than in the pons. Gene ontology and pathway analyses identified involvement of region specific biological processes, of which pathways involved in cellular respiratory metabolism were overarching features. In the VWM frontal white matter, proteins involved in glycolysis/gluconeogenesis and metabolism of various amino acids were decreased compared to controls. By contrast, in the VWM pons white matter, we found a decrease in proteins involved in oxidative phosphorylation. Taken together, our data show that brain regions are affected in parallel in VWM, but to different degrees. We found region-specific involvement of different cell types and discovered that cellular respiratory metabolism is likely to be differentially affected across white matter regions in VWM. These region-specific changes help explain regional vulnerability to pathology in VWM.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CS, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CS, The Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Douwe Molenaar
- Department of Systems Bioinformatics, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Truus Abbink
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, 3584 CS, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CS, The Netherlands
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands.
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands.
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands.
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, 1081 HV, The Netherlands
- Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, 1081 HV, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|