1
|
Nossar LF, Lopes JA, Pereira-Acácio A, Costa-Sarmento G, Rachid R, Wendt CHC, Miranda K, Galina A, Rodrigues-Ferreira C, Muzi-Filho H, Vieyra A. Chronic undernutrition impairs renal mitochondrial respiration accompanied by intense ultrastructural damage in juvenile rats. Biochem Biophys Res Commun 2024; 739:150583. [PMID: 39182354 DOI: 10.1016/j.bbrc.2024.150583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
This study investigated whether chronic undernutrition alters the mitochondrial structure and function in renal proximal tubule cells, thus impairing fluid transport and homeostasis. We previously showed that chronic undernutrition downregulates the renal proximal tubules (Na++K+)ATPase, the main molecular machine responsible for fluid transport and ATP consumption. Male rats received a multifactorial deficient diet, the so-called Regional Basic Diet (RBD), mimicking those used in impoverished regions worldwide, from weaning to a juvenile age (3 months). The diet has a low content (8 %) of poor-quality proteins, low lipids, and no vitamins compared to control (CTR). We investigated citrate synthase activity, mitochondrial respiration (oxygraphy) in phosphorylating and non-phosphorylating conditions with different substrates/inhibitors, potential across the internal membrane (Δψ), and anion superoxide/H2O2 formation. The data were correlated with ultrastructural alterations evaluated using transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM). Citrate synthase activity decreased (∼50 %) in RBD rats, accompanied by a similar reduction in respiration in non-phosphorylating conditions, maximum respiratory capacity, and ATP synthesis. The Δψ generation and its dissipation after carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone remained unmodified in the survival mitochondria. H2O2 production increased (∼100 %) after Complex II energization. TEM demonstrated intense matrix vacuolization and disruption of cristae junctions in a subpopulation of RBD mitochondria, which was also demonstrated in the 3D analysis of FIB-SEM tomography. In conclusion, chronic undernutrition impairs mitochondrial functions in renal proximal tubules, with profound alterations in the matrix and internal membrane ultrastructure that culminate with the compromise of ATP supply for transport processes.
Collapse
Affiliation(s)
- Luiz F Nossar
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jarlene A Lopes
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Amaury Pereira-Acácio
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil
| | - Glória Costa-Sarmento
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rachel Rachid
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Camila H C Wendt
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Kildare Miranda
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging/INBEB, Rio de Janeiro, 21941-902, Brazil
| | - Antonio Galina
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Clara Rodrigues-Ferreira
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Humberto Muzi-Filho
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adalberto Vieyra
- Center for Research in Precision Medicine, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Graduate Program of Translational Biomedicine, University of Grande Rio, Duque de Caxias, 25071-202, Brazil; National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
2
|
Zulfiqar U, Khokhar A, Maqsood MF, Shahbaz M, Naz N, Sara M, Maqsood S, Sahar S, Hussain S, Ahmad M. Genetic biofortification: advancing crop nutrition to tackle hidden hunger. Funct Integr Genomics 2024; 24:34. [PMID: 38365972 DOI: 10.1007/s10142-024-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Amman Khokhar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Sana Maqsood
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sajila Sahar
- Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Pereira‐Acácio A, Veloso‐Santos JPM, Alves‐Bezerra D, Costa‐Sarmento G, Muzi‐Filho H, Vieyra A. Different antihypertensive and metabolic responses to rostafuroxin in undernourished and normonourished male rats: Outcomes on bodily Na + handling. Physiol Rep 2023; 11:e15820. [PMID: 37667414 PMCID: PMC10477346 DOI: 10.14814/phy2.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Hypertension is a pandemic nowadays. We aimed to investigate whether chronic undernutrition modifies the response to the antihypertensive drug rostafuroxin in juvenile hypertensive rats. Chronic undernutrition was induced in male rats using a multideficient diet known as the Regional Basic Diet (RBD), mimicking alimentary habits in impoverished regions worldwide. Animals were given RBD-or a control/CTRL normal diet for rodents-from weaning to 90 days, and rostafuroxin (1 mg/kg body mass) was orally administered from day 60 onwards. For the last 2 days, the rats were hosted in metabolic cages to measure food/energy, water, Na+ ingestion, and urinary volume. Rostafuroxin increased food/energy/Na+ intake in CTRL and RBD rats but had opposite effects on Na+ balance (intake minus urinary excretion). The drug normalized the decreased plasma Na+ concentration in RBD rats, increased urinary volume in RBD but not in CTRL, and decreased and increased urinary Na+ concentration in the RBD and CTRL groups, respectively. Rostafuroxin decreased the ouabain-sensitive (Na+ +K+ )ATPase and increased the ouabain-resistant Na+ -ATPase from proximal tubule cells in both groups and normalized the systolic blood pressure in RBD without effect in CTRL rats. We conclude that chronic undernutrition modifies the response of blood pressure and metabolic responses to rostafuroxin.
Collapse
Affiliation(s)
- Amaury Pereira‐Acácio
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - João P. M. Veloso‐Santos
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Danilo Alves‐Bezerra
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Glória Costa‐Sarmento
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Humberto Muzi‐Filho
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| |
Collapse
|
4
|
Pereira-Acácio A, Veloso-Santos JPM, Nossar LF, Costa-Sarmento G, Muzi-Filho H, Vieyra A. Angiotensin-(3–4) normalizes the elevated arterial blood pressure and abnormal Na+/energy handling associated with chronic undernutrition by counteracting the effects mediated by type 1 angiotensin II receptors. PLoS One 2022; 17:e0273385. [PMID: 35984814 PMCID: PMC9390919 DOI: 10.1371/journal.pone.0273385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the mechanisms by which chronic administration of a multideficient diet after weaning alters bodily Na+ handling, and culminates in high systolic blood pressure (SBP) at a juvenile age. From 28 to 92 days of age, weaned male Wistar rats were given a diet with low content and poor-quality protein, and low lipid, without vitamin supplementation, which mimics the diets consumed in impoverished regions worldwide. We measured food, energy and Na+ ingestion, together with urinary Na+ excretion, Na+ density (Na+ intake/energy intake), plasma Na+ concentration, SBP, and renal proximal tubule Na+-transporting ATPases. Undernourished rats aged 92 days had only one-third of the control body mass, lower plasma albumin, higher SBP, higher energy intake, and higher positive Na+ balance accompanied by decreased plasma Na+ concentration. Losartan or Ang-(3–4) normalized SBP, and the combination of the 2 substances induced an accentuated negative Na+ balance as a result of strong inhibition of Na+ ingestion. Na+ density in undernourished rats was higher than in control, irrespective of the treatment, and they had downregulated (Na++K+)ATPase and upregulated Na+-ATPase in proximal tubule cells, which returned to control levels after Losartan or Ang-(3–4). We conclude that Na+ density, not only Na+ ingestion, plays a central role in the pathophysiology of elevated SBP in chronically undernourished rats. The observations that Losartan and Ang-(3–4) normalized SBP together with negative Na+ balance give support to the proposal that Ang II⇒AT1R and Ang II⇒AT2R axes have opposite roles within the renin-angiotensin-aldosterone system of undernourished juvenile rats.
Collapse
Affiliation(s)
- Amaury Pereira-Acácio
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P. M. Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F. Nossar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
5
|
de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021; 15:747229. [PMID: 34776851 PMCID: PMC8581450 DOI: 10.3389/fnins.2021.747229] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is an important brain modulatory network. ECS regulates brain homeostasis throughout development, from progenitor fate decision to neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning, memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral system-adipose tissue in the regulation of food intake, energy storage, nutritional status, and adipose tissue mass, consequently affecting obesity. Loss of ECS control might affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug abuse, and impact neurodegenerative (Alzheimer's, Parkinson, Huntington, Multiple, and Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders. Practice of regular physical and/or mind-body mindfulness and meditative activities have been shown to modulate endocannabinoid (eCB) levels, in addition to other players as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation, metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy, and arthritis) and tumor expansion, both/either in the brain and/or in the periphery. The reason for such a vast impact is the fact that arachidonic acid, a precursor of eCBs, is present in every membrane cell of the body and on demand eCBs synthesis is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or peptide (hemopressin) players of the ECS also operate as regulators of physiological allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy consumption, metabolism and cell death. To live a better life implies in a vigilant ECS, through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels, surrounded by a constructive social network. Cannabidiol, a diet supplement has been a major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities. Cognitive challenges and emotional intelligence might strengthen the ECS, which is built on a variety of synapses that modify human behavior. As therapeutically concerned, the ECS is essential for maintaining homeostasis and cannabinoids are promising tools to control innumerous targets.
Collapse
Affiliation(s)
- Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alinny Rosendo Isaac
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hércules Rezende Freitas
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Macedo de Almeida
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Fernanda Schuck
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Costa Ferreira
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|