1
|
Xu J, Wang JY, Huang P, Liu ZH, Wang YX, Zhang RZ, Ma HM, Zhou BY, Ni XY, Xiong CR, Xia CM. Schistosomicidal effects of histone acetyltransferase inhibitors against Schistosoma japonicum juveniles and adult worms in vitro. PLoS Negl Trop Dis 2024; 18:e0012428. [PMID: 39159234 PMCID: PMC11361729 DOI: 10.1371/journal.pntd.0012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/29/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Schistosomiasis is a relatively neglected parasitic disease that afflicts more than 250 million people worldwide, for which the control strategy relies mainly on mass treatment with the only available drug, praziquantel (PZQ). This approach is not sustainable and is a priority for developing novel drug candidates for the treatment and control of schistosomiasis. METHODOLOGYS/PRINCIPAL FINDINGS In our previous study, we found that DW-3-15, a kind of PZQ derivative, could significantly downregulate the expression of the histone acetyltransferase of Schistosoma japonicum (SjHAT). In this study, several commercially available HAT inhibitors, A485, C646 and curcumin were screened in vitro to verify their antischistosomal activities against S. japonicum juveniles and adults. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of HAT inhibitors in vitro. Quantitative real-time PCR was employed to detect the mRNA level of SjHAT after treatment with different HAT inhibitors. Our results demonstrated that curcumin was the most effective inhibitor against both juveniles and adults of S. japonicum, and its schistosomicidal effects were time- and dose dependent. However, A485 and C646 had limited antischistosomal activity. Scanning electron microscopy demonstrated that in comparison with DW-3-15, curcumin caused similar tegumental changes in male adult worms. Furthermore, both curcumin and DW-3-15 significantly decreased the SjHAT mRNA level, and curcumin dose-dependently reduced the SjHAT expression level in female, male and juvenile worms. CONCLUSIONS Among the three commercially available HATs, curcumin was the most potent against schistosomes. Both curcumin and our patent compound DW-3-15 markedly downregulated the expression of SjHAT, indicating that SjHAT may be a potential therapeutic target for developing novel antischistosomal drug candidates.
Collapse
Affiliation(s)
- Jing Xu
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou Medical College, Soochow University, Suzhou City, P. R. China
| | - Jing-Yi Wang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Ping Huang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Zi-Hao Liu
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Yu-Xin Wang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Run-Ze Zhang
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Hui-Min Ma
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Bi-Yue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Xiao-Yan Ni
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
| | - Chun-Rong Xiong
- Jiangsu Institute of Parasitic Diseases, Wuxi City, P. R. China
| | - Chao-Ming Xia
- Department of Parasitology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou City, P. R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou Medical College, Soochow University, Suzhou City, P. R. China
| |
Collapse
|
2
|
Ghanimatdan M, Sadjjadi SM, Mikaeili F, Teimouri A, Jafari SH, Derakhshanfar A, Hashemi-Hafshejani S. Therapeutic effect of curcumin nanoemulsion on cystic echinococcosis in BALB/c mice: a computerized tomography (CT) scan and histopathologic study evaluation. BMC Complement Med Ther 2024; 24:143. [PMID: 38575891 PMCID: PMC10993536 DOI: 10.1186/s12906-024-04451-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This study aimed to determine the therapeutic efficacy of curcumin nanoemulsion (CUR-NE) in mice infected with Echinococcus granulosus sensu stricto protoscoleces. METHODS Forty-two inbred BALB/c mice were divided into seven groups of six animals each. Six groups were inoculated intra-peritoneally with 1500 viable E. granulosus protoscoleces, followed for six months and used as infected groups. The infected groups were named as: CEI1 to CEI6 accordingly. The 7th group was not inoculated and was named cystic echinococcosis noninfected group (CENI7). CEI1 and CEI2 groups received 40 mg/kg/day and 20 mg/kg/day curcumin nanoemulsion (CUR-NE), respectively. CEI3 received nanoemulsion without curcumin (NE-no CUR), CEI4 received curcumin suspension (CUR-S) 40 mg/kg/day, CEI5 received albendazole 150 mg/kg/day and CEI6 received sterile phosphate-buffered saline (PBS). CENI7 group received CUR-NE 40 mg/kg/day. Drugs administration was started after six months post-inoculations of protoscoleces and continued for 60 days in all groups. The secondary CE cyst area was evaluated by computed tomography (CT) scan for each mouse before treatment and on the days 30 and 60 post-treatment. The CT scan measurement results were compared before and after treatment. After the euthanasia of the mice on the 60th day, the cyst area was also measured after autopsy and, the histopathological changes of the secondary cysts for each group were observed. The therapeutic efficacy of CUR-NE in infected groups was evaluated by two methods: CT scan and autopsied cyst measurements. RESULTS Septal calcification in three groups of infected mice (CEI1, CEI2, and CEI4) was revealed by CT scan. The therapeutic efficacy of CUR-NE 40 mg/kg/day (CEI1 group) was 24.6 ± 26.89% by CT scan measurement and 55.16 ± 32.37% by autopsied cysts measurements. The extensive destructive effects of CUR-NE 40 mg/kg/day (CEI1 group) on the wall layers of secondary CE cysts were confirmed by histopathology. CONCLUSION The current study demonstrated a significant therapeutic effect of CUR-NE (40 mg/kg/day) on secondary CE cysts in BALB/c mice. An apparent septal calcification of several cysts revealed by CT scan and the destructive effect on CE cysts observed in histopathology are two critical key factors that suggest curcumin nanoemulsion could be a potential treatment for cystic echinococcosis.
Collapse
Affiliation(s)
- Mohamad Ghanimatdan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fattaneh Mikaeili
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hamed Jafari
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeideh Hashemi-Hafshejani
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Osei-Mensah B, Boakye YD, Anyan WK, Agana TA, Aboagye EA, Bentil I, Lomotey ES, Adu F, Agyare C. In Vitro Cercaricidal Activity, Acute Toxicity, and GC/MS Analysis of Some Selected Ghanaian Medicinal Plants. J Parasitol Res 2023; 2023:4589424. [PMID: 37745984 PMCID: PMC10516696 DOI: 10.1155/2023/4589424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Schistosomiasis is a human parasitic disease caused by the Schistosoma species and is recognised in public health as second to malaria in terms of its socioeconomic impact on humans. Four local plants native to many tribes in Ghana and known for their medicinal properties against some diseases were assessed for their cercaricidal activity against Schistosoma mansoni cercariae. The plants, namely, Newbouldia laevis stem bark (NLSB), Spathodea campanulata stem bark (SCSB), Momordica charantia leaves (MCL), and Ocimum viride leaves (OVL), were extracted for their active metabolites using methanol. Preliminary phytochemical screening was carried out on all plant extracts and powdered samples. The crude extracts were tested against S. mansoni cercariae in vitro using Balanites aegyptiaca as the positive control. The percentage of mortalities for each extract was recorded. Gas chromatography/mass spectrometry (GC/MS) analysis was conducted on all the plant extracts. Phytochemical analysis revealed the presence of saponins, glycosides, triterpenoids, sterols, alkaloids, flavonoids, and tannins in almost all the extracts. GC/MS analysis showed the presence of medicinally important active volatile compounds in each extract such as thymol, n-hexadecanoic acid, phytol, and maltol. All four plants showed relatively different levels of activity against S. mansoni cercariae at different times and concentrations. The LC50 values of the plant extracts were determined at the end of the assay. At 240 min, NLSB, SCSB, MCL, and OVL extracts had LC50 values of 487.564, 429.898, 197.696, and 0.129 μg/mL, respectively. Hence, this study revealed the potency of Ocimum viride leaves, Momordica charantia leaves, Spathodea campanulata stem bark, and Newbouldia laevis stem bark against S. mansoni. These plants could therefore be exploited as possible candidates for curbing schistosomiasis.
Collapse
Affiliation(s)
- Bright Osei-Mensah
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - William Kofi Anyan
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Theresa Appiah Agana
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Ivy Bentil
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Elvis Suatey Lomotey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Francis Adu
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Agyare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
4
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
5
|
Botanical Products in the Treatment and Control of Schistosomiasis: Recent Studies and Distribution of Active Plant Resources According to Affected Regions. BIOLOGY 2020; 9:biology9080223. [PMID: 32823660 PMCID: PMC7464741 DOI: 10.3390/biology9080223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022]
Abstract
Schistosomiasis, a parasitic disease caused by trematodes of the genus Schistosoma, is the second most prevalent parasitic disease in the world. It affects around 200 million people. Clinical treatment, prophylaxis, and prevention are performed in countries susceptible to schistosomiasis. In the pharmacological treatment for an acute form of schistosomiasis, the use of antiparasitics, mainly praziquantel, is more common. As an alternative way, prevention methods such as reducing the population of intermediate hosts (mollusks) with molluscicides are important in the control of this disease by interrupting the biological cycle of this etiological parasite. Despite the importance of pharmacological agents and molluscicides, they have side effects and environmental toxicity. In addition, they can lead to the development of resistance enhancing of parasites, and lead to the search for new and effective drugs, including resources of vegetal origin, which in turn, are abundant in the affected countries. Thus, the purpose of this review is to summarize recent studies on botanical products with potential for the control of schistosomiasis, including anti-Schistosoma and molluscicide activities. In addition, species and plant derivatives according to their origin or geographical importance indicating a possible utility of local resources for countries most affected by the disease are presented.
Collapse
|
6
|
Gouveia MJ, Brindley PJ, Gärtner F, Vale N. Activity of Combinations of Antioxidants and Anthelmintic Drugs against the Adult Stage of Schistosoma mansoni. J Parasitol Res 2020; 2020:8843808. [PMID: 32832132 PMCID: PMC7429017 DOI: 10.1155/2020/8843808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
Schistosomiasis remains a major neglected tropical disease. The treatment and control of schistosomiasis rely on a single drug, praziquantel (PZQ). Despite its efficacy, treatment with PZQ presents some major drawbacks including an inability of the chemotherapy to reverse disease-induced fibrosis and the prospect of the emergence of drug resistance. Here, we investigated a novel therapeutic approach with antioxidant biomolecules in combination with PZQ against the adult developmental stage of Schistosoma mansoni and oviposition in vitro, given that this therapeutic approach achieved synergistic/additive activity against larval schistosomes. The antioxidants curcumin and oxadiazole per se exhibited antischistosomal activity against adult worms leading to severe morphological alterations and death. Additionally, the antioxidant flavone combined with vandetanib or imatinib improved antischistosomal activity against adult forms. By contrast, however, these antioxidant-anthelmintic combinations were not as effective against adults in comparison to larval schistosomes. Nevertheless, the antioxidants alone or combined with drugs inhibited oviposition.
Collapse
Affiliation(s)
- Maria João Gouveia
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Center for the Study in Animal Science, University of Porto (CECA/ICETA), Rua de D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Matos JL, da Silva KR, de Lima Paula LA, Cunha WR, Ramos SB, Rodrigues V, Cabral FJ, Magalhães LG. Molluscicidal and cercaricidal activities of curcumin on Biomphalaria glabrata and Schistosoma mansoni cercariae. PEST MANAGEMENT SCIENCE 2020; 76:1228-1234. [PMID: 31587497 DOI: 10.1002/ps.5631] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Schistosomiasis control in endemic areas depends on several factors, including chemotherapy, snail control and adequate sanitation. In this context, the employment of compounds isolated from plants is an important issue regarding infection and snail control. The aim of this study was therefore to evaluate the effects of curcumin (CUR), a compound isolated from Curcuma longa, against snails and embryos of Biomphalaria glabrata, which is the most important intermediate host of schistosomiasis in the Americas, as well as in cercariae, the infecting larval stage of Schistosoma mansoni. RESULTS CUR presented high activity against B. glabrata embryos and moderate activity against newborn and adult snails. The lethal concentration (LC50 ) values after being exposed for 24 h and evaluated for 7 days were 6.54 (95% confidence interval (CI) 5.86-7.30) μg mL-1 for the embryos and 42.29 (95% CI 33.82-52.87) μg mL-1 and 87.69 (95% CI 68.82-111.7) μg mL-1 for the newborn and adult snails, respectively. Moreover, CUR inhibited the development of embryos and egg hatching, and decreased the fecundity rates of adult snails. CUR also demonstrated cercaricidal activity with LC50 values lower than 10 μg mL-1 at 1, 3, 6, 9 and 12 h, respectively. CONCLUSION Our data show that CUR has potential molluscicidal and cercaricidal activities. Moreover, as a nutraceutical compound that is toxic to both invertebrate host and parasite, CUR has the potential to be explored as a safe new agent to combat schistosomiasis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jaqueline L Matos
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Karen R da Silva
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Lucas A de Lima Paula
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Wilson R Cunha
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| | - Salvador B Ramos
- Department of Health Promotion, University of Franca, Franca, Brazil
| | - Vanderlei Rodrigues
- Department of Biochemistry and Immunology, College of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda J Cabral
- Department of Animal Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Lizandra G Magalhães
- Research Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Franca, Brazil
| |
Collapse
|
8
|
Abou El Dahab MM, Shahat SM, Mahmoud SSM, Mahana NA. In vitro effect of curcumin on Schistosoma species viability, tegument ultrastructure and egg hatchability. Exp Parasitol 2019; 199:1-8. [PMID: 30790572 DOI: 10.1016/j.exppara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/01/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022]
Abstract
Schistosomiasis remains a severe problem of public health in developing countries. The development of resistance to praziquantel (PZQ) has justified the search for new alternative chemotherapies with new formulations, more effective, and without adverse effects. Curcumin (CUR), the major phenolic compound present in rhizome of turmeric (Curcuma longa L.), has been traditionally used against various diseases including parasitic infections. Here, the antischistosomal activity of CUR (50-500 μM), evaluated in parallel against S. mansoni and S. haematobium adult worms, appeared significant (P < 0.05 to < 0.0001) in a time- and dose-dependent manner. Two h incubation with CUR (500 μM) caused 100% irreversible killing of both schistosomal species. CUR (250 μM) caused the death of S. haematobium and S. mansoni worms after 2 h and 4 h, respectively. As CUR concentration decreases (50 μM), all coupled adult worms were separated into individual male and female but the worms remained viable up to 4 h. Scanning and transmission electron microscopy revealed that S. haematobium are more sensitive than S. mansoni to CUR schistosomicidal effects. In support, CUR was found to affect the antigenicity of surface membrane molecules of S. haematobium, but not S. mansoni. Of importance, CUR significantly (P < 0.05 to < 0.0001) affected S. mansoni eggs hatchability and viability, a ground for its use in chemotherapy of schistosomiasis mansoni and japonicum because of its increased bioavailability in the gastrointestinal tract. The data together emphasize that CUR is a promising potential schistosomicidal drug.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/immunology
- Antigens, Helminth/isolation & purification
- Antigens, Surface/immunology
- Antigens, Surface/isolation & purification
- Cricetinae
- Curcumin/pharmacology
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Female
- Intestine, Small/parasitology
- Liver/parasitology
- Male
- Mesocricetus
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Ovum/drug effects
- Ovum/physiology
- Schistosoma haematobium/drug effects
- Schistosoma haematobium/immunology
- Schistosoma haematobium/physiology
- Schistosoma haematobium/ultrastructure
- Schistosoma mansoni/drug effects
- Schistosoma mansoni/immunology
- Schistosoma mansoni/physiology
- Schistosoma mansoni/ultrastructure
- Schistosomicides/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Marwa M Abou El Dahab
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt; Zoology Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sondos M Shahat
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
9
|
Gouveia MJ, Brindley PJ, Rinaldi G, Gärtner F, Correia da Costa JM, Vale N. Combination Anthelmintic/Antioxidant Activity Against Schistosoma Mansoni. Biomolecules 2019; 9:E54. [PMID: 30764562 PMCID: PMC6406910 DOI: 10.3390/biom9020054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/11/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease. Treatment for schistosomiasis with praziquantel (PZQ), which is effective against the parasite, by itself is not capable to counteract infection-associated disease lesions including hepatic fibrosis. There is a pressing need for novel therapies. Due to their biological properties, antioxidant biomolecules might be useful in treating and reverting associated pathological sequelae. Here, we investigated a novel therapy approach based on a combination of anthelmintic drugs with antioxidant biomolecules. We used a host-parasite model involving Bioamphalaria glabrata and newly transformed schistosomula (NTS) of Schistosoma mansoni. For in vitro drug screening assays, was selected several antioxidants and evaluated not only antischistosomal activity but also ability to enhance activity of the anthelmintic drugs praziquantel (PZQ) and artesunate (AS). The morphological alterations induced by compounds alone/combined were assessed on daily basis using an inverted and automated microscope to quantify NTS viability by a fluorometric-based method. The findings indicated that not only do some antioxidants improve antischistosomal activity of the two anthelmintics, but they exhibit activity per se, leading to high mortality of NTS post-exposure. The combination index (CI) of PZQ + Mel (CI = 0.80), PZQ + Resv (CI = 0.74), AS + Resv (CI = 0.34), AS + NAC (CI = 0.89), VDT + Flav (CI = 1.03) and VDT + Resv (CI = 1.06) reveal that they display moderate to strong synergism. The combination of compounds with discrete mechanisms of action might provide a valuable adjunct to contribution for treatment of schistosomiasis-associated disease.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study in Animal Science, University of Porto, (CECA/ICETA), Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal.
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA.
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA.
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal.
- University of Porto, i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| | - José Manuel Correia da Costa
- Center for the Study in Animal Science, University of Porto, (CECA/ICETA), Rua de D. Manuel II, Apt 55142, 4051-401 Porto, Portugal.
- Department of Infectious Diseases, INSA-National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal.
| | - Nuno Vale
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Drug Sciences, Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal.
- University of Porto, i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
10
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
11
|
Vieira TM, dos Santos IA, Silva TS, Martins CHG, Crotti AEM. Antimicrobial Activity of Monoketone Curcuminoids Against Cariogenic Bacteria. Chem Biodivers 2018; 15:e1800216. [DOI: 10.1002/cbdv.201800216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tatiana M. Vieira
- Departamento de Química; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 CEP 14040-901 Ribeirão Preto SP Brazil
| | - Isabella A. dos Santos
- Departamento de Química; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 CEP 14040-901 Ribeirão Preto SP Brazil
| | - Thayná S. Silva
- Laboratório de Pesquisa em Microbiologia Aplicada; Universidade de Franca; Av. Dr. Armando Salles de Oliveira, 201 - Parque Universitário CEP 14404600 Franca SP Brazil
| | - Carlos H. G. Martins
- Laboratório de Pesquisa em Microbiologia Aplicada; Universidade de Franca; Av. Dr. Armando Salles de Oliveira, 201 - Parque Universitário CEP 14404600 Franca SP Brazil
| | - Antônio E. M. Crotti
- Departamento de Química; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Av. Bandeirantes, 3900 CEP 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|
12
|
Abstract
In recent years, natural product groups have been gaining prominence as possible sources of new drugs for schistosomiasis. This review attempts to update the antischistosomal natural compounds, or natural product-derived compounds, from the mid-1980s. Some of the main metabolites obtained from plants (e.g., terpenes, alkaloids, phenolic compounds and peptides) with in vitro and/or in vivo antischistosomal properties are discussed. Less thoroughly, due to scarcity of data in the literature, molecules from animals (e.g., peptides) are also described. Special mention of the anthelmintic activity against different parasitic stages of schistosomes is made; the mechanism of action of most of the metabolites is discussed, and a number of bioassay procedures are listed.
Collapse
|
13
|
Roy B, Giri BR. α-Viniferin-Induced Structural and Functional Alterations in Raillietina echinobothrida, a Poultry Tapeworm. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:377-84. [PMID: 25592142 DOI: 10.1017/s1431927614014603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
α-Viniferin, an active component of the plant Carex baccans L., is known for its anticancer, antidiabetic, and anti-inflammatory properties. In Northeast India, different tribes traditionally consume C. baccans to control intestinal helminth infections. Therefore, the present study was carried out to assess the extent of tegumental alteration caused by α-viniferin in Raillietina echinobothrida, a widely prevalent poultry helminth in northeast India. Helminths were exposed in vitro to various doses of α-viniferin (50, 100, and 200 µM/mL of physiological buffered saline) and their motility and mortality were recorded. Stereoscan observations on the parasite exposed to the active compound showed extensive distortion and destruction of the surface fine topography of the tegument compared with controls. The compound also caused extensive damage to the tegument by disintegration of microtriches, disorganization of muscle bundles, and loss of cellular organelles combined with distortion and disruption of the plasma membrane, nuclear membrane, nucleolus, mitochondrial membrane, and cristae. Histochemical and biochemical studies carried out parasites exposed to α-viniferin revealed a decline in the activity of vital tegumental enzymes like acid phosphatase, alkaline phosphatase, and adenosine triphosphatase. Extensive structural and functional alterations observed in the treated parasites are indicative of efficient cestocidal activity of the compound.
Collapse
Affiliation(s)
- Bishnupada Roy
- Parasitology Laboratory,Department of Zoology,North-Eastern Hill University,Shillong-793022,Meghalaya,India
| | - Bikash R Giri
- Parasitology Laboratory,Department of Zoology,North-Eastern Hill University,Shillong-793022,Meghalaya,India
| |
Collapse
|