1
|
Lu Q, Wang H, Zhang X, Yuan T, Wang Y, Feng C, Li Z, Sun S. Corydaline attenuates osteolysis in rheumatoid arthritis via mitigating reactive oxygen species production and suppressing calcineurin-Nfatc1 signaling. Int Immunopharmacol 2024; 142:113158. [PMID: 39293314 DOI: 10.1016/j.intimp.2024.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
AIM OF THE STUDY Osteolysis in Rheumatoid arthritis (RA) is principally provoked by osteoclast hyperactivity. This study aims to employ Corydaline (Cory), a plant extract, as an osteoclast inhibitor in treating RA-inflicted osteolysis while unveiling the corresponding mechanism. MATERIALS AND METHODS Osteoclasts were derived from mouse bone marrow-derived monocytes (BMMs) stimulated with M-CSF and RANKL. Subsequently, utilizing network pharmacology, we performed a thorough analysis of Cory's molecular structure and discerned its preliminary therapeutic potential. Subsequently, LPS was used to simulate and establish an in vitro model of RA, and the biological effect of Cory on osteoclast behaviors was evaluated through various staining methods, RT-qPCR, and Western blot. In addition, a collagen-induced arthritis (CIA) mouse model was developed to evaluate the therapeutic effects of Cory in vivo. RESULTS The results from network pharmacology indicated a significant correlation between Cory, oxidative stress, and calcium signaling. Subsequent in vitro experiments demonstrated Cory's capacity to inhibit the formation and function of osteoclast under inflammatory stimuli, thereby protecting against abnormal bone resorption. This effect is achieved by activating the Nrf2 signaling pathway, mitigating the generation of reactive oxygen species (ROS), and modulating the calcineurin-Nfatc1 signaling. Furthermore, this therapeutic effect of Cory on RA-associated osteolysis was proved in CIA mice models. CONCLUSIONS Cory demonstrates the potential to activate the Nrf2 signaling pathway, effectively countering oxidative stress, and simultaneously inhibit the calcineurin-Nfatc1 signaling pathway to regulate the terminals of calcium signaling. These dual effects collectively reduce osteoclast activity, ultimately contributing to a therapeutic role in RA osteolysis. Therefore, our study presents Cory as a novel pharmaceutical candidate for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tao Yuan
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Wei Y, Liu H, Hu D, He Q, Yao C, Li H, Hu K, Wang J. Recent Advances in Enterovirus A71 Infection and Antiviral Agents. J Transl Med 2024; 104:100298. [PMID: 38008182 DOI: 10.1016/j.labinv.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.
Collapse
Affiliation(s)
- Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Huihui Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Da Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Qun He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Lu Y, Long M, Gao Z, Liu C, Dong K, Zhang H. Long non-coding RNA ENST00000469812 promotes Enterovirus type 71 replication via targeting the miR-4443/NUPR1 axis in rhabdomyosarcoma cells. Arch Virol 2022; 167:2601-2611. [PMID: 36269411 PMCID: PMC9589540 DOI: 10.1007/s00705-022-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Hand, foot, and mouth disease (HFMD) caused by Enterovirus type 71 (EV71) is a serious threat to children's health. However, the pathogenic mechanism of EV71 is still unclear. Long non-coding RNAs (lncRNAs), some of which bind to miRNA as competitive endogenous RNAs (ceRNA) and weaken the silencing effect on the mRNA of downstream target genes, play a key role in regulating the viral infection process. In this study, through experimental verification, we found miR-4443 to be downregulated in cells infected with EV71. Next, by predicting lncRNAs that potentially regulate miR-4443, we found that EV71 infection induced upregulation of lncRNA ENST00000469812 and then further downregulated miR-4443 expression by direct interaction. We also demonstrated that nuclear protein 1 (NUPR1) is one of the target genes of miR-4443 and is involved in the ENST00000469812/miR-4443/NUPR1 regulatory axis. Finally, the ENST00000469812/miR-4443/NUPR1 regulatory axis exhibited a positive effect on EV71 replication. Here, we lay a foundation for exploring the pathogenic mechanism of EV71 and identify potential targets for HFMD treatment.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China ,Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Min Long
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhaowei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Chong Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Huizhong Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Roddan R, Subrizi F, Broomfield J, Ward JM, Keep NH, Hailes HC. Chemoenzymatic Cascades toward Methylated Tetrahydroprotoberberine and Protoberberine Alkaloids. Org Lett 2021; 23:6342-6347. [PMID: 34355910 DOI: 10.1021/acs.orglett.1c02110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydroprotoberberine and protoberberine alkaloids are a group of biologically active natural products with complex molecular scaffolds. Isolation from plants is challenging and stereoselective synthetic routes, particularly of methylated compounds are limited, reducing the potential use of these compounds. In this work, we describe chemoenzymatic cascades toward various 13-methyl-tetrahydroprotoberberbine scaffolds using a stereoselective Pictet-Spenglerase, regioselective catechol O-methyltransferases and selective chemical Pictet-Spengler reactions. All reactions could be performed sequentially, without the workup or purification of any synthetic intermediates. Moreover, the naturally occurring alkaloids have the (+)-configuration and importantly here, a strategy to the (-)-isomers was developed. A methyl group at C-8 was also introduced with some stereocontrol, influenced by the stereochemistry at C-13. Furthermore, a single step reaction was found to convert tetrahydroprotoberberine alkaloids into the analogous protoberberine scaffold, avoiding the use of harsh oxidizing conditions or a selective oxidase. This work provides facile, selective routes toward novel analogues of bioactive alkaloids.
Collapse
Affiliation(s)
- Rebecca Roddan
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, U.K.,Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| | - Fabiana Subrizi
- Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| | - Joseph Broomfield
- Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| | - John M Ward
- Department of Biochemical Engineering, Bernard Katz Building, University College London, London WC1E 6BT, U.K
| | - Nicholas H Keep
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, U.K
| | - Helen C Hailes
- Department of Chemistry, Christopher Ingold Building, University College London, London WC1H 0AJ, U.K
| |
Collapse
|
6
|
Wu S, Wang HQ, Guo TT, Li YH. Luteolin inhibits CVB3 replication through inhibiting inflammation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:762-773. [PMID: 31321999 DOI: 10.1080/10286020.2019.1642329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/30/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Coxsackievirus B3 (CVB3) infection causes many inflammation-related diseases, such as viral myocarditis and aseptic meningitis. However, no vaccines or drugs have been approved for prevention or therapy of CVB3-induced diseases. In this study, luteolin (3,4,5,7-tetrahydroxyflavone) had been found that could dose-dependently reduce the production of viral progeny and synthesis of CVB3 RNA and protein. The luteolin-mediated inhibition of CVB3 was found to be mechanistically possible, at least in part, through depressing the phosphorylation of p38 MAPK and JNK MAPK, and inhibiting NF-κB nuclear translocation and subsequently attenuated the expression of inflammatory cytokines in CVB3-infected cells. Luteolin may be a potential agent or supplement against CVB3 infection by inhibiting inflammation.
Collapse
Affiliation(s)
- Shuo Wu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Hui-Qiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Ting-Ting Guo
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Huan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| |
Collapse
|
7
|
Li Z, Cui B, Liu X, Wang L, Xian Q, Lu Z, Liu S, Cao Y, Zhao Y. Virucidal activity and the antiviral mechanism of acidic polysaccharides against Enterovirus 71 infection in vitro. Microbiol Immunol 2020; 64:189-201. [PMID: 31785100 DOI: 10.1111/1348-0421.12763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/13/2023]
Abstract
Enterovirus 71 (EV71) is the predominant pathogen for severe hand, foot, and mouth disease (HFMD) in children younger than 5 years, and currently no effective drugs are available for EV71. Thus, there is an urgent need to develop new drugs for the control of EV71 infection. In this study, LJ04 was extracted from Laminaria japonica using diethylaminoethyl cellulose-52 with 0.4 mol/l NaCl as the eluent, and its virucidal activity was evaluated based on its cytopathic effects on a microplate. LJ04 is composed of fucose, galactose, and mannose and mainly showed good virucidal activity against EV71. The antiviral mechanisms of LJ04 were the direct inactivation of the virus, the blockage of virus binding, disruptions to viral entry, and weak inhibitory activity against the nonstructural protein 3C. The two most important findings from this study were that LJ04 inhibited EV71 proliferation in HM1900 cells, which are a human microglia cell line, and that LJ04 can directly inactivate EV71 within 2 hr at 37°C. This study demonstrates for the first time the ability of a polysaccharide from L. japonica to inhibit viral and 3C activity; importantly, the inhibition of 3C might have a minor effect on the antiviral effect of LJ04. Consequently, our results identify LJ04 as a potential drug candidate for the control of severe EV71 infection in clinical settings.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Bin Cui
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaowen Liu
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Laicheng Wang
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qingjie Xian
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Zhaoxi Lu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Shuntao Liu
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Yinguang Cao
- Clinical Laboratory, Liaocheng People's Hospital of Taishan Medical University, Liaocheng, Shandong, China
| | - Yueran Zhao
- Department of Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Zeng QX, Wang HQ, Wei W, Guo TT, Yu L, Wang YX, Li YH, Song DQ. Synthesis and biological evaluation of berberine derivatives as a new class of broad-spectrum antiviral agents against Coxsackievirus B. Bioorg Chem 2019; 95:103490. [PMID: 31855821 DOI: 10.1016/j.bioorg.2019.103490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/27/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
A series of novel berberine (BBR) analogues were prepared and tested for their antiviral potencies against six different genotype Coxsackievirus B (CVB1-6) strains, taking BBR core for structural modification. Structure-activity relationship (SAR) research revealed that introduction of a primary amine through a linker at position 3 might be beneficial for both antiviral activity and safety. Compound 14c displayed most promising inhibitory potency with IC50 values of 3.08-9.94 µM against tested CVBs 2-6 strains and satisfactory SI value of 34.3 on CVB3, better than that of BBR. Also, 14c could inhibit CVB3 replication through down-regulating the expression of VP1 protein and VP1 RNA. The mechanism revealed that 14c could suppress host components JNK-MAPK, ERK-MAPK and p38-MAPK activation. Therefore, BBR derivatives were considered to be a new class of anti-CVB agents with an advantage of broad-spectrum anti-CVB potency.
Collapse
Affiliation(s)
- Qing-Xuan Zeng
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Qiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Wei Wei
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Lian Yu
- Jiamusi University, Heilongjiang Province, China
| | - Yan-Xiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu-Huan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Zhong M, Wang HQ, Yan HY, Wu S, Gu ZY, Li YH. Santin inhibits influenza A virus replication through regulating MAPKs and NF-κB pathways. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1205-1214. [PMID: 30417663 DOI: 10.1080/10286020.2018.1520221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
Influenza A virus (IAV) causes high morbidity and significant mortality worldwide. Given the limitations of existing vaccination and antiviral drugs, it is urgent to develop new anti-influenza drugs. Flavonoids are natural polyphenolic compounds with broad applications to treatments for influenza infection. In this study, we demonstrated that santin, a flavonoid compound, showed anti-influenza activity in MDCK and THP-1 cells. Mechanistic studies revealed that santin depressed the phosphorylation of p38 MAPK, JNK/SAPK, ERK, and NF-κB factor and subsequently attenuated the expression of inflammatory cytokines in IAV-infected cells. Thus, santin is a potential candidate for the future development of anti-IAV drugs.
Collapse
Affiliation(s)
- Ming Zhong
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
- Xinjiang Institute of Materia Medica, Urumqi 830002, China
| | - Hui-Qiang Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Hai-Yan Yan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Shuo Wu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Zheng-Yi Gu
- Xinjiang Institute of Materia Medica, Urumqi 830002, China
| | - Yu-Huan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| |
Collapse
|
10
|
Synthesis and Broad Antiviral Activity of Novel 2-aryl-isoindolin-1-ones towards Diverse Enterovirus A71 Clinical Isolates. Molecules 2019; 24:molecules24050985. [PMID: 30862068 PMCID: PMC6429200 DOI: 10.3390/molecules24050985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/18/2023] Open
Abstract
Enterovirus 71 (EV-A71) is the main causative pathogen of childhood hand, foot and mouth disease. Effective medicine is currently unavailable for the treatment of this viral disease. Using the fragment-hopping strategy, a series of 2-aryl-isoindolin-1-one compounds were designed, synthesized and investigated for their in vitro antiviral activity towards multiple EV-A71 clinical isolates (H, BrCr, Shenzhen98, Jiangsu52) in Vero cell culture in this study. The structure⁻activity relationship (SAR) studies identified 2-phenyl-isoindolin-1-ones as a new potent chemotype with potent antiviral activity against EV-A71. Ten out of the 24 tested compounds showed significant antiviral activity (EC50 < 10 µM) towards four EV-A71 strains. Compounds A3 and A4 exhibited broad and potent antiviral activity with the 50% effective concentration (EC50) values in the range of 1.23⁻1.76 μM. Moreover, the selectivity indices of A3 and A4 were significantly higher than those of the reference compound, pirodavir. The western blotting experiment indicated that the viral VP1 was significantly decreased at both the protein and RNA level in a dose-dependent manner following treatment with compound A3. Moreover, compound A3 inhibited the viral replication by acting on the virus entry stage. In summary, this study led to the discovery of 2-aryl-isoindolin-1-ones as a promising scaffold with potent anti-EV-A71 activities, which deserves further in-depth studies.
Collapse
|
11
|
Small molecules as inhibitors of PCSK9: Current status and future challenges. Eur J Med Chem 2018; 162:212-233. [PMID: 30448414 DOI: 10.1016/j.ejmech.2018.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/13/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in regulating lipoprotein metabolism by binding to low-density lipoprotein receptors (LDLRs), leading to their degradation. LDL cholesterol (LDL-C) lowering drugs that operate through the inhibition of PCSK9 are being pursued for the management of hypercholesterolemia and reducing its associated atherosclerotic cardiovascular disease (CVD) risk. Two PCSK9-blocking monoclonal antibodies (mAbs), alirocumab and evolocumab, were approved in 2015. However, the high costs of PCSK9 antibody drugs impede their prior authorization practices and reduce their long-term adherence. Given the potential of small-molecule drugs, the development of small-molecule PCSK9 inhibitors has attracted considerable attention. This article provides an overview of the recent development of small-molecule PCSK9 inhibitors disclosed in the literature and patent applications, and different approaches that have been pursued to modulate the functional activity of PCSK9 using small molecules are described. Challenges and potential strategies in developing small-molecule PCSK9 inhibitors are also discussed.
Collapse
|
12
|
Synthesis and Evolution of Berberine Derivatives as a New Class of Antiviral Agents against Enterovirus 71 through the MEK/ERK Pathway and Autophagy. Molecules 2018; 23:molecules23082084. [PMID: 30127288 PMCID: PMC6222558 DOI: 10.3390/molecules23082084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022] Open
Abstract
Taking berberine (BBR) as the lead, 23 new BBR derivatives were synthesized and examined for their antiviral activities against four different genotype enterovirus 71 (EV71) strains with a cytopathic effect (CPE) assay. Structure-activity relationship (SAR) studies indicated that introduction of a suitable substituent at the 9-position might be beneficial for potency. Among them, compound 2d exhibited most potent activities with IC50 values of 7.12⁻14.8 μM, similar to that of BBR. The effect of 2d was further confirmed in a dose-dependent manner both in RNA and protein level. The mechanism revealed that 2d could inhibit the activation of MEK/ERK signaling pathway. Meanwhile, it could suppress the EV71-induced autophagy by activating AKT and inhibiting the phosphorylation of JNK and PI3KIII proteins. We consider BBR derivatives to be a new family of anti-EV71 agents through targeting host components, with an advantage of broad-spectrum anti-EV71 potency.
Collapse
|