1
|
Morales AW, Du J, Warren DJ, Fernández-Jover E, Martinez-Navarrete G, Bouteiller JMC, McCreery DC, Lazzi G. Machine learning enables non-Gaussian investigation of changes to peripheral nerves related to electrical stimulation. Sci Rep 2024; 14:2795. [PMID: 38307915 PMCID: PMC10837107 DOI: 10.1038/s41598-024-53284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Electrical stimulation of the peripheral nervous system (PNS) is becoming increasingly important for the therapeutic treatment of numerous disorders. Thus, as peripheral nerves are increasingly the target of electrical stimulation, it is critical to determine how, and when, electrical stimulation results in anatomical changes in neural tissue. We introduce here a convolutional neural network and support vector machines for cell segmentation and analysis of histological samples of the sciatic nerve of rats stimulated with varying current intensities. We describe the methodologies and present results that highlight the validity of the approach: machine learning enabled highly efficient nerve measurement collection, while multivariate analysis revealed notable changes to nerves' anatomy, even when subjected to levels of stimulation thought to be safe according to the Shannon current limits.
Collapse
Affiliation(s)
- Andres W Morales
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Jinze Du
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - David J Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Gianluca Lazzi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
2
|
Sivanesan E, North RB, Russo MA, Levy RM, Linderoth B, Hayek SM, Eldabe S, Lempka SF. A Definition of Neuromodulation and Classification of Implantable Electrical Modulation for Chronic Pain. Neuromodulation 2024; 27:1-12. [PMID: 37952135 DOI: 10.1016/j.neurom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES Neuromodulation therapies use a variety of treatment modalities (eg, electrical stimulation) to treat chronic pain. These therapies have experienced rapid growth that has coincided with escalating confusion regarding the nomenclature surrounding these neuromodulation technologies. Furthermore, studies are often published without a complete description of the effective stimulation dose, making it impossible to replicate the findings. To improve clinical care and facilitate dissemination among the public, payors, research groups, and regulatory bodies, there is a clear need for a standardization of terms. APPROACH We formed an international group of authors comprising basic scientists, anesthesiologists, neurosurgeons, and engineers with expertise in neuromodulation. Because the field of neuromodulation is extensive, we chose to focus on creating a taxonomy and standardized definitions for implantable electrical modulation of chronic pain. RESULTS We first present a consensus definition of neuromodulation. We then describe a classification scheme based on the 1) intended use (the site of modulation and its indications) and 2) physical properties (waveforms and dose) of a neuromodulation therapy. CONCLUSIONS This framework will help guide future high-quality studies of implantable neuromodulatory treatments and improve reporting of their findings. Standardization with this classification scheme and clear definitions will help physicians, researchers, payors, and patients better understand the applications of implantable electrical modulation for pain and guide informed treatment decisions.
Collapse
Affiliation(s)
- Eellan Sivanesan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Richard B North
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Marc A Russo
- Hunter Pain Specialists, Broadmeadow, New South Wales, Australia
| | - Robert M Levy
- Neurosurgical Services, Clinical Research, Anesthesia Pain Care Consultants, Tamarac, FL, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Salim M Hayek
- Division of Pain Medicine, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Cui Y, Li L, Liu C, Wang Y, Sun M, Jia B, Shen Z, Sheng X, Deng Y. Water-Responsive 3D Electronics for Smart Biological Interfaces. NANO LETTERS 2023; 23:11693-11701. [PMID: 38018768 DOI: 10.1021/acs.nanolett.3c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Three-dimensional (3D) electronic systems with their potential for enhanced functionalities often require complex fabrication processes. This paper presents a water-based, stimuli-responsive approach for creating self-assembled 3D electronic systems, particularly suited for biorelated applications. We utilize laser scribing to programmatically shape a water-responsive bilayer, resulting in smart 3D electronic substrates. Control over the deformation direction, actuation time, and surface curvature of rolling structures is achieved by adjusting laser-scribing parameters, as validated through experiments and numerical simulations. Additionally, self-locking structures maintain the integrity of the 3D systems. This methodology enables the implementation of spiral twining electrodes for electrophysiological signal monitoring in plants. Furthermore, the integration of self-rolling electrodes onto peripheral nerves in a rodent model allows for stimulation and recording of in vivo neural activities with excellent biocompatibility. These innovations provide viable paths to next-generation 3D biointegrated electronic systems for life science studies and medical applications.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ben Jia
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
4
|
Du J, Morales A. Electrical Stimulation Induced Current Distribution in Peripheral Nerves Varies Significantly with the Extent of Nerve Damage: A Computational Study Utilizing Convolutional Neural Network and Realistic Nerve Models. Int J Neural Syst 2023; 33:2350022. [PMID: 36916993 PMCID: PMC10561898 DOI: 10.1142/s0129065723500223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrical stimulation of the peripheral nervous system is a promising therapeutic option for several conditions; however, its effects on tissue and the safety of the stimulation remain poorly understood. In order to devise stimulation protocols that enhance therapeutic efficacy without the risk of causing tissue damage, we constructed computational models of peripheral nerve and stimulation cuffs based on extremely high-resolution cross-sectional images of the nerves using the most recent advances in computing power and machine learning techniques. We developed nerve models using nonstimulated (healthy) and over-stimulated (damaged) rat sciatic nerves to explore how nerve damage affects the induced current density distribution. Using our in-house computational, quasi-static, platform, and the Admittance Method (AM), we estimated the induced current distribution within the nerves and compared it for healthy and damaged nerves. We also estimated the extent of localized cell damage in both healthy and damaged nerve samples. When the nerve is damaged, as demonstrated principally by the decreased nerve fiber packing, the current penetrates deeper into the over-stimulated nerve than in the healthy sample. As safety limits for electrical stimulation of peripheral nerves still refer to the Shannon criterion to distinguish between safe and unsafe stimulation, the capability this work demonstrated is an important step toward the development of safety criteria that are specific to peripheral nerve and make use of the latest advances in computational bioelectromagnetics and machine learning, such as Python-based AM and CNN-based nerve image segmentation.
Collapse
|
5
|
Botzanowski B, Donahue MJ, Ejneby MS, Gallina AL, Ngom I, Missey F, Acerbo E, Byun D, Carron R, Cassarà AM, Neufeld E, Jirsa V, Olofsson PS, Głowacki ED, Williamson A. Noninvasive Stimulation of Peripheral Nerves using Temporally-Interfering Electrical Fields. Adv Healthc Mater 2022; 11:e2200075. [PMID: 35751364 PMCID: PMC11468927 DOI: 10.1002/adhm.202200075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/13/2022] [Indexed: 01/27/2023]
Abstract
Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. This principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model is validated. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve is demonstrated. This method is simple, relying on the repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.
Collapse
Affiliation(s)
- Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Mary J. Donahue
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Malin Silverå Ejneby
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Alessandro L. Gallina
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| | - Ibrahima Ngom
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Florian Missey
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Donghak Byun
- Laboratory of Organic ElectronicsCampus NorrköpingLinköping UniversityNorrköpingSweden
| | - Romain Carron
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Antonino M. Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS)Zeughaustrasse 43Zurich8004Switzerland
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
| | - Peder S. Olofsson
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
- EMUNE ABNanna Svartz väg 6ASolna171 65Sweden
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices LabCentral European Institute of TechnologyBrno University of TechnologyPurkyňova 123Brno61200Czech Republic
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS)INSERMUMR_1106Aix‐Marseille UniversitéMarseilleFrance
- Laboratory of ImmunobiologyCenter for Bioelectronic MedicineDepartment of MedicineSolna, Karolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Alqahtani A, Alabed A, Alharbi Y, Bakouri M, Lovell NH, Dokos S. A varying-radius cable equation for the modelling of impulse propagation in excitable fibres. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3616. [PMID: 35582823 DOI: 10.1002/cnm.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present a varying-radius cable equation for nerve fibres taking into account the varying diameter along the neuronal segments. Finite element neuronal models utilising the classical (fixed-radius) and varying-radius cable formulations were compared using simple and realistic morphologies under intra- and extracellular electrical stimulation protocols. We found that the use of the classical cable equation to model intracellular neural electrical stimulation exhibited an error of 17% in a passive resistive cable model with abrupt change in radius from 1 to 2 μm, when compared to the known analytical solution and varying-radius cable formulation. This error was observed to increase substantially using more realistic neuron morphologies and branching structures. In the case of extracellular stimulation however, the difference between the classical and varying-radius formulations was less pronounced, but we expect this difference will increase under more complex stimulation paradigms such as high-frequency stimulation. We conclude that for computational neuroscience applications, it is essential to use the varying-radius cable equation for accurate prediction of neuronal responses under electrical stimulation.
Collapse
Affiliation(s)
- Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied Medical Science, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Amr Alabed
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, Australia
| | - Yousef Alharbi
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohsen Bakouri
- Department of Medical Equipment Technology, College of Applied Medical Science, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Ehlich J, Migliaccio L, Sahalianov I, Nikić M, Brodský J, Gablech I, Vu XT, Ingebrandt S, Głowacki ED. Direct measurement of oxygen reduction reactions at neurostimulation electrodes. J Neural Eng 2022; 19. [PMID: 35688124 DOI: 10.1088/1741-2552/ac77c0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/11/2022]
Abstract
Objective. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming. We want to evaluate oxygen reduction reactions (ORR) occurring at different electrode materials when using established materials and stimulation protocols.Approach. As stimulation electrodes, we have tested platinum, gold, tungsten, nichrome, iridium oxide, titanium, titanium nitride, and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). We use cyclic voltammetry and voltage-step amperometry in oxygenated versus inert conditions to establish at which potentials ORR occurs, and the magnitudes of diffusion-limited ORR currents. We also benchmark the areal capacitance of each electrode material. We use amperometric probes (Clark-type electrodes) to quantify the O2and H2O2concentrations in the vicinity of the electrode surface. O2and H2O2concentrations are measured while applying DC current, or various biphasic charge-balanced pulses of amplitude in the range 10-30µC cm-2/phase. To corroborate experimental measurements, we employ finite element modelling to recreate 3D gradients of O2and H2O2.Main results. All electrode materials support ORR and can create hypoxic conditions near the electrode surface. We find that electrode materials differ significantly in their onset potentials for ORR, and in the extent to which they produce H2O2as a by-product. A key result is that typical charge-balanced biphasic pulse protocols do lead to irreversible ORR. Some electrodes induce severely hypoxic conditions, others additionally produce an accumulation of hydrogen peroxide into the mM range.Significance. Our findings highlight faradaic ORR as a critical consideration for neural interface devices and show that the established biphasic/charge-balanced approach does not prevent irreversible changes in O2concentrations. Hypoxia and H2O2can result in different (electro)physiological consequences.
Collapse
Affiliation(s)
- Jiří Ehlich
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ihor Sahalianov
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Marta Nikić
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.,Institute of Neuroelectronics, Technical University of Munich, Munich, Germany
| | - Jan Brodský
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Imrich Gablech
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Xuan Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
8
|
Du J, Morales A, Kosta P, Bouteiller JMC, Martinez G, Warren D, Fernandez E, Lazzi G. Electrical Stimulation Induced Current Distribution in Peripheral Nerves Varies Significantly with the Extent of Nerve Damage: A Computational Study Utilizing Convolutional Neural Network and Realistic Nerve Models. INTERNATIONAL WORK-CONFERENCE ON THE INTERPLAY BETWEEN NATURAL AND ARTIFICIAL COMPUTATION 2022; 13258:526-535. [PMID: 37846407 PMCID: PMC10578432 DOI: 10.1007/978-3-031-06242-1_52] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Although electrical stimulation is an established treatment option for multiple central nervous and peripheral nervous system diseases, its effects on the tissue and subsequent safety of the stimulation are not well understood. Therefore, it is crucial to design stimulation protocols that maximize therapeutic efficacy while avoiding any potential tissue damage. Further, the stimulation levels need to be adjusted regularly to ensure that they are safe even with the changes to the nerve due to long-term stimulation. Using the latest advances in computing capabilities and machine learning approaches, we developed computational models of peripheral nerve stimulation based on very high-resolution cross-sectional images of the nerves. We generated nerve models constructed from non-stimulated (healthy) and over-stimulated (damaged) rat sciatic nerves to examine how the current density distribution is affected by nerve damage. Using our in-house numerical solver, the Admittance Method (AM), we computed the induced current distribution inside the nerves and compared the current penetration for healthy and damaged nerves. Our computational results indicate that when the nerve is damaged, primarily evidenced by the decreased nerve fiber packing, the current penetrates deeper inside the nerve than in the healthy case. As safety limits for electrical stimulation of biological tissue are still debated, we ultimately aim to utilize our computational models to determine refined safety criteria and help design safer and more efficacious electrical stimulation protocols.
Collapse
Affiliation(s)
- Jinze Du
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andres Morales
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Kosta
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Gema Martinez
- Institute of Bioengineering, University Miguel Hernandez, Elche and CIBER-BBN, Madrid, Spain
| | - David Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Eduardo Fernandez
- Institute of Bioengineering, University Miguel Hernandez, Elche and CIBER-BBN, Madrid, Spain
| | - Gianluca Lazzi
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Institute for Technology and Medical Systems Innovation (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Du J, Morales A, Paknahad J, Kosta P, Bouteiller JMC, Fernandez E, Lazzi G. Electrode Spacing and Current Distribution in Electrical Stimulation of Peripheral Nerve: A Computational Modeling Study using Realistic Nerve Models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4416-4419. [PMID: 34892199 PMCID: PMC10072138 DOI: 10.1109/embc46164.2021.9631068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical stimulation of peripheral nerves has long been used and proven effective in restoring function caused by disease or injury. Accurate placement of electrodes is often critical to properly excite the nerve and yield the desired outcome. Computational modeling is becoming an important tool that can guide the rapid development and optimization of such implantable neural stimulation devices. Here, we developed a heterogeneous very high-resolution computational model of a realistic peripheral nerve stimulated by a current source through cuff electrodes. We then calculated the current distribution inside the nerve and investigated the effect of electrodes spacing on current penetration. In the present study, we first describe model implementation and calibration; we then detail the methodology we use to calculate current distribution and apply it to characterize the effect of electrodes distance on current penetration. Our computational results indicate that when the source and return cuff electrodes are placed close to each other, the penetration depth in the nerve is shallower than the cases in which the electrode distance is larger. This study outlines the utility of the proposed computational methods and anatomically correct high-resolution models in guiding and optimizing experimental nerve stimulation protocols.
Collapse
|
10
|
Abbott JR, Joshi-Imre A, Cogan SF. In Vitro Electrochemical Properties of Titanium Nitride Neural Stimulating and Recording Electrodes as a Function of Film Thickness and Voltage Biasing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6647-6650. [PMID: 34892632 DOI: 10.1109/embc46164.2021.9630715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thin film titanium nitride (TiN), with a geometric surface area of 2,000 μm2, was deposited on planar test structures with thicknesses of 95, 185, 315, and 645 nm. Electrochemical measurements of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and voltage transient (VT) were performed. We found that impedance values decreased and charge storage and charge injection capacities increased with increasing film thicknesses. Additionally, applying a anodic bias to TiN can increase the charge injection of the film to nearly double that of a non-biased film.
Collapse
|
11
|
Foutz T, Wong M. Brain Stimulation Treatments in Epilepsy: Basic Mechanisms and Clinical Advances. Biomed J 2021; 45:27-37. [PMID: 34482013 PMCID: PMC9133258 DOI: 10.1016/j.bj.2021.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Drug-resistant epilepsy, characterized by ongoing seizures despite appropriate trials of anti-seizure medications, affects approximately one-third of people with epilepsy. Brain stimulation has recently become available as an alternative treatment option to reduce symptomatic seizures in short and long-term follow-up studies. Several questions remain on how to optimally develop patient-specific treatments and manage therapy over the long term. This review aims to discuss the clinical use and mechanisms of action of Responsive Neural Stimulation and Deep Brain Stimulation in the treatment of epilepsy and highlight recent advances that may both improve outcomes and present new challenges. Finally, a rational approach to device selection is presented based on current mechanistic understanding, clinical evidence, and device features.
Collapse
Affiliation(s)
- Thomas Foutz
- Department of Neurology, Washington University in St. Louis, USA.
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis, USA.
| |
Collapse
|
12
|
Zhu A, Qureshi AA, Kozin ED, Lee DJ. Concepts in Neural Stimulation: Electrical and Optical Modulation of the Auditory Pathways. Otolaryngol Clin North Am 2019; 53:31-43. [PMID: 31685241 DOI: 10.1016/j.otc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the mechanisms of neural stimulation is necessary to improve the management of sensory disorders. Neurons can be artificially stimulated using electrical current, or with newer stimulation modalities, including optogenetics. Electrical stimulation forms the basis for all neuroprosthetic devices that are used clinically. Off-target stimulation and poor implant performance remain concerns for patients with electrically based neuroprosthetic devices. Optogenetic techniques may improve cranial nerve stimulation strategies used by various neuroprostheses and result in better patient outcomes. This article reviews the fundamentals of neural stimulation and provides an overview of recent major advancements in light-based neuromodulation."
Collapse
Affiliation(s)
- Angela Zhu
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Ahad A Qureshi
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Elliott D Kozin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Daniel J Lee
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| |
Collapse
|
13
|
|
14
|
Foreword of Volume 1. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.06001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Foreword of Volume 3. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.06003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Krames ES, Hunter Peckham P, Rezai AR. Foreword of Volume 2. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.06002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Semework M, DiStasio M. Short-term dynamics of causal information transfer in thalamocortical networks during natural inputs and microstimulation for somatosensory neuroprosthesis. FRONTIERS IN NEUROENGINEERING 2014; 7:36. [PMID: 25249973 PMCID: PMC4158812 DOI: 10.3389/fneng.2014.00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/14/2014] [Indexed: 11/16/2022]
Abstract
Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain—machine interface SSNP applications.
Collapse
Affiliation(s)
| | - Marcello DiStasio
- Biomedical Engineering Program, SUNY Downstate Medical Center and NYU Polytechnic Brooklyn, New York, NY, USA
| |
Collapse
|
18
|
The Role of Biomaterials in Stimulating Bioelectrodes. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Rohde LM, Bonder BR, Triolo RJ. Exploratory study of perceived quality of life with implanted standing neuroprostheses. ACTA ACUST UNITED AC 2012; 49:265-78. [PMID: 22773528 DOI: 10.1682/jrrd.2010.08.0156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Individuals with spinal cord injury (SCI) need options for negotiating architectural barriers, completing essential transfers, and accessing items on high shelves or in cupboards that cannot be reached from the wheelchair or safely managed with reachers. Case Western Reserve University (CWRU) and the Department of Veterans Affairs (VA) have developed an assistive technology device to assist individuals with SCI to stand and transfer. The 8-channel implanted CWRU-VA system enables persons with SCI to exercise, stand, and maneuver in the vicinity of their wheelchairs. Interventions that decrease barriers to mobility and participation can have a significant effect on an individual's perceived quality of life (QOL). This study uses a qualitative research methodology comprised of a series of semi-structured interviews to determine the effects on perceived QOL of an implanted 8-channel functional electrical stimulation (FES) system for standing after SCI. The results reveal that individuals with SCI currently using an implanted FES standing system perceived significant improvements in QOL related to the neuroprosthesis. Implanted neuroprostheses for standing have the potential to improve QOL for veterans living with SCI.
Collapse
Affiliation(s)
- Loretta M Rohde
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.
| | | | | |
Collapse
|
20
|
Triolo RJ, Nogan Bailey S, Miller ME, Rohde LM, Anderson JS, Davis JA, Abbas JJ, DiPonio LA, Forrest GP, Gater DR, Yang LJ. Longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. Arch Phys Med Rehabil 2012; 93:896-904. [PMID: 22541312 PMCID: PMC4111081 DOI: 10.1016/j.apmr.2012.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To investigate the longitudinal performance of a surgically implanted neuroprosthesis for lower-extremity exercise, standing, and transfers after spinal cord injury. DESIGN Case series. SETTING Research or outpatient physical therapy departments of 4 academic hospitals. PARTICIPANTS Subjects (N=15) with thoracic or low cervical level spinal cord injuries who had received the 8-channel neuroprosthesis for exercise and standing. INTERVENTION After completing rehabilitation with the device, the subjects were discharged to unrestricted home use of the system. A series of assessments were performed before discharge and at a follow-up appointment approximately 1 year later. MAIN OUTCOME MEASURES Neuroprosthesis usage, maximum standing time, body weight support, knee strength, knee fatigue index, electrode stability, and component survivability. RESULTS Levels of maximum standing time, body weight support, knee strength, and knee fatigue index were not statistically different from discharge to follow-up (P>.05). Additionally, neuroprosthesis usage was consistent with subjects choosing to use the system on approximately half of the days during each monitoring period. Although the number of hours using the neuroprosthesis remained constant, subjects shifted their usage to more functional standing versus more maintenance exercise, suggesting that the subjects incorporated the neuroprosthesis into their lives. Safety and reliability of the system were demonstrated by electrode stability and a high component survivability rate (>90%). CONCLUSIONS This group of 15 subjects is the largest cohort of implanted lower-extremity neuroprosthetic exercise and standing system users. The safety and efficiency data from this group, and acceptance of the neuroprosthesis as demonstrated by continued usage, indicate that future efforts toward commercialization of a similar device may be warranted.
Collapse
Affiliation(s)
- Ronald J. Triolo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center (Cleveland OH)
- Case Western Reserve University (Cleveland, OH)
| | | | - Michael E. Miller
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center (Cleveland OH)
| | | | - James S. Anderson
- Case Western Reserve University (Cleveland, OH)
- MetroHealth Medical Center (Cleveland OH)
| | - John A. Davis
- Tulane University Medical Center (New Orleans, LA), during study: Case Western Reserve University and MetroHealth Medical Center (Cleveland OH)
| | - James J. Abbas
- Arizona State University (Phoenix AZ), during study: University of Kentucky (Lexington KY)
| | | | | | - David R. Gater
- Richmond VA Medical Center / Virginia Commonwealth University (Richmond VA), during study: University of Kentucky and Lexington Veterans Affairs Medical Center (Lexington KY)
| | | |
Collapse
|
21
|
Asymptotic model of electrical stimulation of nerve fibers. Med Biol Eng Comput 2012; 50:243-51. [PMID: 22350436 DOI: 10.1007/s11517-012-0870-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
We present a novel theory and computational algorithm for modeling electrical stimulation of nerve fibers in three dimensions. Our approach uses singular perturbation to separate the full 3D boundary value problem into a set of 2D "transverse" problems coupled with a 1D "longitudinal" problem. The resulting asymptotic model contains not one but two activating functions (AF): the longitudinal AF that drives the slow development of the mean transmembrane potential and the transverse AF that drives the rapid polarization of the fiber in the transverse direction. The asymptotic model is implemented for a prototype 3D cylindrical fiber with a passive membrane in an isotropic extracellular region. The validity of this approach is tested by comparing the numerical solution of the asymptotic model to the analytical solutions. The results show that the asymptotic model predicts steady-state transmembrane potential directly under the electrodes with the root mean square error of 0.539 mV, i.e., 1.04% of the maximum transmembrane potential. Thus, this work has created a computationally efficient algorithm that facilitates studies of the complete spatiotemporal dynamics of nerve fibers in three dimensions.
Collapse
|
22
|
Ansari U, Lovell NH, Suaning GJ. Measuring the electric field of bioelectrodes in saline during stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:807-810. [PMID: 23366015 DOI: 10.1109/embc.2012.6346054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In order to provide effective vision in a retinal prosthesis, it is necessary to provide sufficient phosphene quantities ideally by parallel stimulation of multiple electrodes. A common, limiting factor in parallel stimulation is the occurrence of cross talk, which can cause undesired tissue stimulation leading to inconsistent percepts. In this paper we present a system developed for measuring the electric field in an in vitro environment by stimulation of bioelectrodes immersed in an electrolyte. The results from this study provides a better understanding of the electric field generated by stimulating electrodes. Calculation of activation area can provide useful information in regards to electrode separation to eliminate cross talk during parallel stimulation.
Collapse
Affiliation(s)
- Umar Ansari
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
23
|
Aravamudhan S, Bellamkonda RV. Toward a Convergence of Regenerative Medicine, Rehabilitation, and Neuroprosthetics. J Neurotrauma 2011; 28:2329-47. [DOI: 10.1089/neu.2010.1542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shyam Aravamudhan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia
| | - Ravi V. Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia
| |
Collapse
|
24
|
Bionic prosthetic hands: A review of present technology and future aspirations. Surgeon 2011; 9:336-40. [PMID: 22041647 DOI: 10.1016/j.surge.2011.06.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/19/2011] [Accepted: 06/05/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bionic prosthetic hands are rapidly evolving. An in-depth knowledge of this field of medicine is currently only required by a small number of individuals working in highly specialist units. However, with improving technology it is likely that the demand for and application of bionic hands will continue to increase and a wider understanding will be necessary. METHODS We review the literature and summarise the important advances in medicine, computing and engineering that have led to the development of currently available bionic hand prostheses. FINDINGS The bionic limb of today has progressed greatly since the hook prostheses that were introduced centuries ago. We discuss the ways that major functions of the human hand are being replicated artificially in modern bionic hands. Despite the impressive advances bionic prostheses remain an inferior replacement to their biological counterparts. Finally we discuss some of the key areas of research that could lead to vast improvements in bionic limb functionality that may one day be able to fully replicate the biological hand or perhaps even surpass its innate capabilities. CONCLUSION It is important for the healthcare community to have an understanding of the development of bionic hands and the technology underpinning them as this area of medicine will expand.
Collapse
|
25
|
Ansari U, Dokos S, Lovell NH, Suaning GJ. Modeling of microcavity electrodes for medical implants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1515-8. [PMID: 21096370 DOI: 10.1109/iembs.2010.5626835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A common, limiting factor in neuroprosthesis design is the safe charge-carrying capacity of the metallic electrodes that deliver electrical stimuli to biological tissue. If exceeded, adverse effects can occur, including electrode dissolution and cell necrosis. A straightforward method of addressing charge-carrying capacity limitations is to increase the surface area of the stimulating electrodes. However, for planar electrode arrays, this approach typically requires a corresponding increase in the distance between electrodes which can be detrimental to the efficacy of the device, particularly in sensory applications such as visual or auditory prostheses where densely-packed electrodes may offer advantage. An alternative approach involves fabricating electrodes such that they have a three-dimensional structure and, thus allow electrode spacing to be maintained while increasing the surface area. Here we describe a mathematical model that assists in the exploration of cup-shaped, micro-cavity electrodes within an insulating substrate. This model simulates the electrical fields generated by these electrodes and is used to explore the relationship between the micro-cavity electrode depth and the electrical field generated within the electrolyte. For electrode diameters of 350 µ, spaced at a pitch of 600 εm, the model predicts that the most efficacious microcavity depth is 400 εm.
Collapse
Affiliation(s)
- Umar Ansari
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | | | | | | |
Collapse
|
26
|
Grill WM, Norman SE, Bellamkonda RV. Implanted Neural Interfaces: Biochallenges and Engineered Solutions. Annu Rev Biomed Eng 2009; 11:1-24. [DOI: 10.1146/annurev-bioeng-061008-124927] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281;
| | - Sharon E. Norman
- Bioengineering Program Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Ravi V. Bellamkonda
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia 30332
| |
Collapse
|
27
|
Mahnam A, Hashemi SMR, Grill WM. Measurement of the current-distance relationship using a novel refractory interaction technique. J Neural Eng 2009; 6:036005. [PMID: 19458398 DOI: 10.1088/1741-2560/6/3/036005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is important to know the spatial extent of neural activation around the stimulating electrodes when using extracellular electrical stimulation for the determination of the structure and function of neural circuit connections or for the restoration of function. The current-distance relationship quantifies the relationship between the threshold current for excitation of a neuron, I(th), and the distance between the electrode and the neuron, r, with two parameters: the offset, I(0), and the current-distance constant, k, with a quadratic equation, I(th)(r) = I(0) + kr(2). We proposed a new method to determine the parameters of the current-distance relationship, and thereby estimate the spatial extent of activation, based on the refractory interaction technique. Refractory interaction is a method that exploits the interaction between the regions of activation produced by two electrodes, when the second stimulus is delivered while neurons activated by the first electrode are in their refractory period. Computer simulations of electrical stimulation of a population of nerve fibers were used to determine the accuracy of the method. The mean relative error in k was 19% and in I(0) was 17%, and the spatial extent of stimulation could be determined with an absolute error of 19 microm and a relative error less than 11%. Subsequently, the method was applied to measure the current-distance properties of peripheral motor nerve fibers and indicated that k = 27 microA mm(-2) and I(0) = 49 microA. This method provided robust estimates of the current-distance properties, and provides a means to determine the spatial extent of activation by extracellular stimulation.
Collapse
Affiliation(s)
- Amin Mahnam
- Department of Biomedical Engineering, Duke University, NC, USA
| | | | | |
Collapse
|
28
|
|
29
|
Fundamentals of Electrical Stimulation. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Caparso AV, Durand DM, Mansour JM. A nerve cuff electrode for controlled reshaping of nerve geometry. J Biomater Appl 2008; 24:247-73. [PMID: 18987020 DOI: 10.1177/0885328208097426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study is the development of a nerve electrode that reorganizes nerve geometry slowly and controllably. The Flat Interface Nerve Electrode (FINE) can reshape the nerve into an elongated oval and provide selective stimulation. However, the rate of closure of this electrode is difficult to control. The Slowly Closing - FINE (SC-FINE) is designed with an opening height larger than the size of the nerve to accommodate initial swelling. The electrode closes slowly to reshape the nerve into the desired flat geometry. The SC-FINE is created by combining the reshaping properties of the FINE and the controllable degradation of Poly (DL lactic-co-glycolic) acid (PLGA). Bonding 50/50 or 65/35 PLGA to a stretched FINE increased the opening heights (OH) on average from 0.1 mm to 1.66 +/- 0.45 and 2.05 +/- 0.55 mm respectively. The addition of the PLGA films controls the time course of closure over a period of 16 +/- 1 days and 14 to 16 hours for the 50/50 and 65/35 SC-FINEs respectively in vitro. An in vivo chronic experiment using 50/50 SC-FINEs implanted in 28 rats with an average OH of 1.87 +/- 0.34 mm show that the reshaping periods in vivo and in vitro are similar.
Collapse
Affiliation(s)
- Anthony V Caparso
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
31
|
|
32
|
Chowdhury V, Morley JW, Coroneo MT. Development of an extraocular retinal prosthesis: Evaluation of stimulation parameters in the cat. J Clin Neurosci 2008; 15:900-6. [DOI: 10.1016/j.jocn.2007.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 08/21/2007] [Indexed: 10/21/2022]
|
33
|
Abbas JJ, Riener R. Using Mathematical Models and Advanced Control Systems Techniques to Enhance Neuroprosthesis Function. Neuromodulation 2008; 4:187-95. [DOI: 10.1046/j.1525-1403.2001.00187.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Mahnam A, Hashemi SMR, Grill WM. Computational evaluation of methods for measuring the spatial extent of neural activation. J Neurosci Methods 2008; 173:153-64. [PMID: 18606455 DOI: 10.1016/j.jneumeth.2008.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/23/2008] [Accepted: 05/24/2008] [Indexed: 11/28/2022]
Abstract
Knowing of the spatial extent of neural activation around extracellular stimulating electrodes is necessary to ensure that only the desired neurons are activated or to determine which neurons are responsible for an observed response. Various approaches have been used to estimate the current-distance relationship and thereby the spatial extent of activation resulting from extracellular stimulation. However, these approaches all require underlying assumptions and simplifications, and since the actual extent of activation cannot be directly measured, the impact of deviations from these assumptions cannot be determined. We implemented a computer-based model of excitation of a population of nerve fibers and used the model to evaluate a range of approaches proposed for measuring the spatial extent of neural activation. The estimates with each method were compared with measurements of the true spatial extent of activation that were accessible in the simulations to quantify the accuracy of the estimates and to determine the dependence of accuracy on measurement parameters (interelectrode distance, stimulation amplitude, noise). A newly proposed method, based on the refractory interaction technique, provided the most accurate and most robust estimates of the spatial extent of neural activation.
Collapse
Affiliation(s)
- Amin Mahnam
- Department of Biomedical Engineering, Duke University, NC 27708-0281, USA
| | | | | |
Collapse
|
35
|
Goffredo M, Bernabucci I, Schmid M, Conforto S. A neural tracking and motor control approach to improve rehabilitation of upper limb movements. J Neuroeng Rehabil 2008; 5:5. [PMID: 18251996 PMCID: PMC2259362 DOI: 10.1186/1743-0003-5-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 02/05/2008] [Indexed: 11/30/2022] Open
Abstract
Background Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that of lower extremities. For these reasons, researchers are developing new methods and technologies so that the rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES), where the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic information associated with the execution of a planar goal-oriented movement. More specifically, this work details two steps of the proposed system: an ad hoc markerless motion analysis algorithm for the estimation of kinematics, and a neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb. Methods The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position error with respect to the requested arm trajectory and comparison between curvature factors have been calculated in order to determine the accuracy of the system. Results The proposed method has been tested on real data acquired during the execution of planar goal-oriented arm movements. Main results concern the capability of the system to accurately recreate the movement task by providing a synthetic arm model with the stimulation patterns estimated by the inverse dynamics model. In the simulation of movements with a length of ± 20 cm, the model has shown an unbiased angular error, and a mean (absolute) position error of about 1.5 cm, thus confirming the ability of the system to reliably drive the model to the desired targets. Moreover, the curvature factors of the factual human movements and of the reconstructed ones are similar, thus encouraging future developments of the system in terms of reproducibility of the desired movements. Conclusion A novel FES-assisted rehabilitation system for the upper limb is presented and two parts of it have been designed and tested. The system includes a markerless motion estimation algorithm, and a biologically inspired neural controller that drives a biomechanical arm model and provides the stimulation patterns that, in a future development, could be used to drive a smart Functional Electrical Stimulation system (sFES). The system is envisioned to help in the rehabilitation of post stroke hemiparetic patients, by assisting the movement of the paretic upper limb, once trained with a set of movements performed by the therapist or in virtual reality. Future work will include the application and testing of the stimulation patterns in real conditions.
Collapse
Affiliation(s)
- Michela Goffredo
- Dipartimento di Elettronica Applicata, Università degli Studi Roma TRE, Roma, Italy.
| | | | | | | |
Collapse
|
36
|
Warwick K, Gasson MN, Spiers AJ. Therapeutic potential of computer to cerebral cortex implantable devices. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:529-35. [PMID: 17691344 DOI: 10.1007/978-3-211-33081-4_61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this article, an overview of some of the latest developments in the field of cerebral cortex to computer interfacing (CCCI) is given. This is posed in the more general context of Brain-Computer Interfaces in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system. Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bidirectionally with technology and the internet. A view is taken as to the prospects for the future for CCCI, in terms of its broad therapeutic role.
Collapse
Affiliation(s)
- K Warwick
- Department of Cybernetics, University of Reading, Reading, UK.
| | | | | |
Collapse
|
37
|
Snoek GJ, van Til JA, Krabbe PFM, Ijzerman MJ. Decision for reconstructive interventions of the upper limb in individuals with tetraplegia: the effect of treatment characteristics. Spinal Cord 2007; 46:228-33. [PMID: 17680013 DOI: 10.1038/sj.sc.3102110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Survey. OBJECTIVE To determine the effect of treatment characteristics on the decision for reconstructive interventions for the upper extremities (UE) in subjects with tetraplegia. SETTING Seven specialized spinal cord injury centres in the Netherlands. METHOD Treatment characteristics for UE reconstructive interventions were determined. Conjoint analysis (CA) was used to determine the contribution and the relative importance of the treatment characteristics on the decision for therapy. Therefore, a number of different treatment scenarios using these characteristics were established. Different pairs of scenarios were presented to subjects who were asked to choose the preferred scenario of each set. RESULTS Forty-nine subjects with tetraplegia with a stable C5, C6 or C7 lesion were selected. All treatment characteristics significantly influenced the choice for treatment. Relative importance of treatment characteristics were intervention type (surgery or surgery with functional electrical stimulation implant) 13%, number of operations 15%, in-patient rehabilitation period 22%, ambulant rehabilitation period 9%, complication rate 15%, improvement of elbow function 10%, improvement of hand function 15%. In deciding for therapy, 40% of the subjects focused on one characteristic. CONCLUSION CA is applicable in Spinal Cord Injury medicine to study the effect of health outcomes and non-health outcomes on the decision for treatment. Non-health outcomes, which relate to the intensity of treatment, are equally important or even more important than functional outcome in the decision for reconstructive UE surgery in subjects with tetraplegia.
Collapse
Affiliation(s)
- G J Snoek
- Spinal Cord Injury Department, Roessingh Rehabilitation Centre, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Tesfayesus W, Yoo P, Moffitt M, Durand DM. Blind source separation of nerve cuff recordings. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2006:95-8. [PMID: 17271612 DOI: 10.1109/iembs.2004.1403099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrical stimulation of peripheral nerves can be used to restore partial motor function to individuals with neurological impairment. Previous work from our lab has shown that the flat interface nerve electrode (FINE) can be used to selectively stimulate fiber populations within a nerve trunk. We expect that selective recording of spatially segregated axon populations may also be possible with the FINE. The purpose of this modeling study was to assess the feasibility of using blind source separation (BSS) of the neurograms recorded with the FINE to distinguish signals from independent fascicles. We show that BSS is useful for identifying independent fascicular signals. Further, we introduce a simple post-BSS processing method that resolves the inherent permutation ambiguity of BSS, and allows the BSS-estimated signals to be deterministically related to the appropriate corresponding fascicles.
Collapse
Affiliation(s)
- W Tesfayesus
- Dept. of Biomedical Eng., Case Western Reserve Univ., Cleveland, OH, USA
| | | | | | | |
Collapse
|
39
|
Song YK, Stein J, Patterson WR, Bull CW, Davitt KM, Serruya MD, Zhang J, Nurmikko AV, Donoghue JP. A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation. J Neural Eng 2007; 4:213-8. [PMID: 17873423 DOI: 10.1088/1741-2560/4/3/006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent advances in functional electrical stimulation (FES) show significant promise for restoring voluntary movement in patients with paralysis or other severe motor impairments. Current approaches for implantable FES systems involve multisite stimulation, posing research issues related to their physical size, power and signal delivery, surgical and safety challenges. To explore a different means for delivering the stimulus to a distant muscle nerve site, we have elicited in vitro FES response using a high efficiency microcrystal photovoltaic device as a neurostimulator, integrated with a biocompatible glass optical fiber which forms a lossless, interference-free lightwave conduit for signal and energy transport. As a proof of concept demonstration, a sciatic nerve of a frog is stimulated by the microcrystal device connected to a multimode optical fiber (core diameter of 62.5 microm), which converts optical activation pulses ( approximately 100 micros) from an infrared semiconductor laser source (at 852 nm wavelength) into an FES signal.
Collapse
Affiliation(s)
- Yoon-Kyu Song
- Division of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shyu JS, Maia M, Weiland JD, Ohearn T, Chen SJ, Margalit E, Suzuki S, Humayun MS. Electrical Stimulation in Isolated Rabbit Retina. IEEE Trans Neural Syst Rehabil Eng 2006; 14:290-8. [PMID: 17009488 DOI: 10.1109/tnsre.2006.881536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experiments were conducted to assess the effect of stimulating electrode parameters (size, position, and waveform shape) on electrically elicited ganglion cell action potentials from isolated rabbit retina. Thirty-eight isolated rabbit retinas were stimulated with bipolar stimulating electrodes (either 125 or 25 microm in diameter) positioned on either the ganglion or the photoreceptor side. Recording electrodes were placed between the optic disc and the stimulating electrodes. Cathodic-first, biphasic, current waveforms of varying pulse durations (0.1, 0.5, 1 ms) were used. For the four conditions tested (125-electrode and 25-microm electrode, ganglion cell, and photoreceptor positions) threshold currents ranged from 6.7 to 23.6 microA, depending on location and pulse duration. With 1-ms pulse duration, no statistically significant difference was seen between threshold currents when either size electrode was used to stimulate either the ganglion cell side or the photoreceptor side. For all groups, the threshold currents using the 1-ms pulse were lower than those using 0.1 ms, but the 0.1-ms pulses used less charge. These experiments provide a number of valuable insights into the relative effects of several stimulation parameters critical to the development of an implanted electronic retinal prosthesis.
Collapse
Affiliation(s)
- Jeng-Shyong Shyu
- Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chowdhury V, Morley JW, Coroneo MT. Stimulation of the retina with a multielectrode extraocular visual prosthesis. ANZ J Surg 2005; 75:697-704. [PMID: 16076336 DOI: 10.1111/j.1445-2197.2005.03498.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND An extraocular approach to developing a retinal prosthesis for blind patients using electrodes placed on the outer surface of the eye is suggested. Experiments were carried out to determine the feasibility of this approach, and evaluate electrode configurations and parameters for stimulation. METHODS In anaesthetized cats, a 21-electrode extraocular retinal prosthesis (ERP) array was sutured to the sclera over the lateral surface of the eye. Electrically evoked potentials (EEP) were recorded at the visual cortex bilaterally in response to retinal stimulation with the electrode array. Bipolar stimulation of the ERP array electrodes in horizontal and vertical configurations and at different interelectrode separations was investigated with biphasic constant-current pulses. RESULTS Electrical stimulation of the lateral retina with an ERP elicited EEP that were higher in the ipsilateral visual cortex. The threshold for bipolar retinal stimulation was 500 microA. EEP amplitude increased with increases in stimulus pulse duration and current intensity. Retinal stimulation was slightly more effective with electrodes in a vertical as opposed to horizontal orientation. A larger interelectrode separation resulted in a higher EEP amplitude. CONCLUSIONS Retinal stimulation with a prototype ERP array is demonstrated. The thresholds for retinal excitation are below safe charge-density limits for chronic neural stimulation. Ipsilateral localization of the EEP suggests that localized retinal stimulation is occurring. An ERP is a new approach to retinal prosthesis research, and might lead to the development of a low-resolution visual prosthesis for blind patients.
Collapse
Affiliation(s)
- Vivek Chowdhury
- Department of Ophthalmology Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
42
|
Chowdhury V, Morley JW, Coroneo MT. Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex. J Clin Neurosci 2005; 12:574-9. [PMID: 16051097 DOI: 10.1016/j.jocn.2004.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 10/05/2004] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To assess the efficacy of a device using extraocular electrodes as a retinal prosthesis by evaluating the responses evoked in the visual cortex to electrical stimulation. METHODS In anaesthetised cats, a lateral orbital dissection and ipsilateral parietal craniotomy was performed. Two extraocular retinal prosthesis (ERP) disc electrodes were sutured to the sclera on the lateral and superior aspects of the globe. Retinal stimulation was performed with charge-balanced constant-current pulses. Potentials evoked in the visual cortex were measured with a ball electrode placed on the lateral gyrus after removal of the dura. RESULTS Stable attachment of the ERP electrodes to the globe was achieved with scleral sutures. Visual cortex responses were recorded with the electrodes in bipolar and monopolar configurations. The evoked response consisted of an early component with a peak around 8 ms, and a late component with a peak after 50 ms. Thresholds for evoking a response occurred at current intensities as low as 500 microA. Through extrapolation from evoked response amplitude data, thresholds as low as 300 microA were calculated. Cathodal monopolar stimulation demonstrated lower thresholds than anodal stimulation for evoking cortical responses. CONCLUSIONS The ERP electrodes can be easily attached to the globe and are effective in electrically stimulating the retina, evoking responses in the primary visual cortex. Threshold charge-density was within safe limits for neural stimulation.
Collapse
Affiliation(s)
- Vivek Chowdhury
- Department of Ophthalmology, Prince of Wales Clinical School, Randwick, NSW, Australia.
| | | | | |
Collapse
|
43
|
Chowdhury V, Morley JW, Coroneo MT. Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci 2004; 11:750-5. [PMID: 15337140 DOI: 10.1016/j.jocn.2003.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 12/08/2003] [Indexed: 11/15/2022]
Abstract
We are developing a neural prosthesis to electrically stimulate the visual cortex to restore basic visual perceptions to blind patients. The effects on cortical excitation of different stimulus configurations using a prototype electrode array are presented. Cats underwent a bilateral craniotomy to expose the cortex. An array for brain stimulation was placed on the surface of the right hemisphere. Cortical stimulation was undertaken in a variety of configurations while measuring the evoked responses that propagated through transcallosal pathways, at a homologous region on the contralateral hemisphere. Cortical excitation elicited by stimulation with a particular paradigm could be assessed by measuring the spatial spread and amplitudes of evoked responses in the contralateral hemisphere. Results from this transcallosal model have allowed us to examine the spatial and amplitude effects of cortical stimulation with our prototype electrode array and will aid in developing a neuroprosthesis for blind patients.
Collapse
Affiliation(s)
- Vivek Chowdhury
- Department of Ophthalmology, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
44
|
Abstract
Never before has any civilization had the unique opportunity to enhance human performance on the scale that we will face in the near future. The convergence of nanotechnology, biotechnology, information technology, and cognitive science (NBIC) is creating a set of powerful tools that have the potential to significantly enhance human performance as well as transform society, science, economics, and human evolution. As the NBIC convergence becomes more understood, the possibility that we may be able to enhance human performance in the three domains of therapy, augmentation, and designed evolution will become anticipated and even expected. In addition, NBIC convergence represents entirely new challenges for scientists, policymakers, and business leaders who will have, for the first time, vast new and powerful tools to shape markets, societies, and lifestyles. The emergence of NBIC convergence will challenge us in new ways to balance risk and return, threat and opportunity, and social responsibility and competitive advantage as we step into the 21st century.
Collapse
Affiliation(s)
- James Canton
- Institute for Global Futures, 2084 Union Street, San Francisco, CA 94123, USA.
| |
Collapse
|
45
|
Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JGR. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 2004; 557:175-90. [PMID: 14978199 PMCID: PMC1665051 DOI: 10.1113/jphysiol.2003.055772] [Citation(s) in RCA: 490] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (</40/ mV mm(-1)), applied parallel to the somato-dendritic axis, induced polarization of CA1 pyramidal cells; the relationship between applied field and induced polarization was linear (0.12 +/- 0.05 mV per mV mm(-1) average sensitivity at the soma). The peak amplitude and time constant (15-70 ms) of membrane polarization varied along the axis of neurons with the maximal polarization observed at the tips of basal and apical dendrites. The polarization was biphasic in the mid-apical dendrites; there was a time-dependent shift in the polarity reversal site. DC fields altered the thresholds of action potentials evoked by orthodromic stimulation, and shifted their initiation site along the apical dendrites. Large electric fields could trigger neuronal firing and epileptiform activity, and induce long-term (>1 s) changes in neuronal excitability. Electric fields perpendicular to the apical-dendritic axis did not induce somatic polarization, but did modulate orthodromic responses, indicating an effect on afferents. These results demonstrate that DC fields can modulate neuronal excitability in a time-dependent manner, with no clear threshold, as a result of interactions between neuronal compartments, the non-linear properties of the cell membrane, and effects on afferents.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Neurophysiology, University of Birmingham, Egbaston, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng 2002; 49:1574-9. [PMID: 12549739 DOI: 10.1109/tbme.2002.805487] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stimulating electrode materials must be capable of supplying high-density electrical charge to effectively activate neural tissue. Platinum is the most commonly used material for neural stimulation. Two other materials have been considered: iridium oxide and titanium nitride. This study directly compared the electrical characteristics of iridium oxide and titanium nitride by fabricating silicon substrate probes that differed only in the material used to form the electrode. Electrochemical measurements indicated that iridium oxide had lower impedance and a higher charge storage capacity than titanium nitride, suggesting better performance as a stimulating electrode. Direct measurement of the electrode potential in response to a biphasic current pulse confirmed that iridium oxide uses less voltage to transfer the same amount of charge, therefore using less power. The charge injection limit for titanium nitride was 0.87 mC/cm2, contradicting other reports estimating that titanium nitride was capable of injecting 22 mC/cm2. Iridium oxide charge storage was 4 mC/cm2, which is comparable to other published values for iridium oxide. Electrode efficiency will lead to an overall more efficient and effective device.
Collapse
Affiliation(s)
- James D Weiland
- Doheny Retina Institute, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
47
|
Broniatowski M, Grundfest-Broniatowski S, Tyler DJ, Scolieri P, Abbass F, Tucker HM, Brodsky S. Dynamic laryngotracheal closure for aspiration: a preliminary report. Laryngoscope 2001; 111:2032-40. [PMID: 11801992 DOI: 10.1097/00005537-200111000-00031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS An estimated 500,000 patients per year in the United States. are affected by stroke-related dysphagia. Approximately half experience aspiration, which can lead to pneumonia or death. Aspiration may result from many factors, including delayed transport of the bolus, faulty laryngeal elevation, and poor coordination or inappropriate timing of vocal cord closure. Interventions carried out to protect the lungs are usually irreversible, destructive to the upper airway, and rarely prevent the need for enteral tube feeding. STUDY DESIGN We present a report of the first implantations of a new device in an FDA-approved study to restore dynamic laryngotracheal separation. Two stroke patients needing tracheostomy were selected based on chronic aspiration verified by clinical and radiologic criteria (modified barium swallow [MBS]). METHODS The left recurrent laryngeal nerve was exposed and electrically stimulated to verify vocal fold adduction. Huntington Medical Research Institute Bipolar Helical Electrodes were then implanted around the nerve. The leads were tunneled and linked to a NeuroControl Implantable Receiver-Stimulator placed subcutaneously on the chest wall. Activation of the stimulator was performed through an external transmitter linked by induction. RESULTS The device was successfully triggered intra- and postoperatively. Serial flexible fiberoptic endoscopies and MBS demonstrate that aspiration is systematically arrested using low levels of electrical stimulation (42 Hz, 48-100 microsec, 1 mA). DISCUSSION This pioneering work has shown that aspiration can be controlled without airway damage for a wide population of neurologically impaired patients because it appears more physiological than standard therapies. CONCLUSION Based on the first two patients, paced laryngotracheal separation is clinically effective in controlling aspiration.
Collapse
Affiliation(s)
- M Broniatowski
- Department of Surgery Otolaryngology-Head and Neck Surgery, St. Vincent Charity Hospital, University Hospital Health System, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|