1
|
Yang PF, Ma WL, Xiao H, Hansen KM, Wang L, Sun JJ, Liu LY, Zhang ZF, Jia HL, Li YF. Temperature dependence of the rain-gas and snow-gas partition coefficients for nearly a thousand chemicals. CHEMOSPHERE 2024; 362:142565. [PMID: 38871187 DOI: 10.1016/j.chemosphere.2024.142565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.
Collapse
Affiliation(s)
- Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China; Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315800, China
| | - Kaj M Hansen
- Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
| | - Liang Wang
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Jing-Jing Sun
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Hong-Liang Jia
- International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology (PA-HIT), Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China; IJRC-PTS-NA, Toronto, ON, M2J 3N8, Canada.
| |
Collapse
|
2
|
Karre AV, Valsaraj KT, Vasagar V. Review of air-water interface adsorption and reactions between trace gaseous organic and oxidant compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162367. [PMID: 36822420 DOI: 10.1016/j.scitotenv.2023.162367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The surface chemistry of the atmospheric aerosol through homogeneous and heterogeneous catalytic reactions in the bulk water and the air-water surface is reviewed. Water plays a critical role as a substrate or an actual reactant in atmospheric reactions. The atmospheric aerosol differs in shape and surface area. Many gaseous reactive species and oxidants react at the air-water surface. Different thermodynamic methods to estimate partitioning coefficients are explored. The Gibbs free energy is reduced when reactant gaseous species react with oxidant at the air-water surface; this phenomenon is explained using examples. Langmuir-Hinshelwood reaction mechanism to quantify the heterogeneous reaction rate at the air-water interface is discussed. Critical comparisons of various sampling techniques used to analyze adsorption and reaction at the water surface are presented. The heterogeneous reaction rate at the air-water surface is significantly higher than in the bulk water phase due to a cage effect, higher rate of reactions, and lower Gibbs free energy of adsorption.
Collapse
Affiliation(s)
| | - Kalliat T Valsaraj
- Cain Department of Chemical Engineering, Louisiana State University, LA 70803, United States
| | | |
Collapse
|
3
|
Michoulier E, Noble JA, Simon A, Mascetti J, Toubin C. Adsorption of PAHs on interstellar ice viewed by classical molecular dynamics. Phys Chem Chem Phys 2018. [DOI: 10.1039/c8cp00593a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work represents a complete description of PAH–ice interaction in the ground electronic state and at low temperature, providing the binding energies and barrier heights necessary to the ongoing improvement of astrochemical models.
Collapse
Affiliation(s)
- Eric Michoulier
- Laboratoire de Physique des Lasers
- Atomes et Molécules (PhLAM) UMR 8523 CNRS
- Université de Lille
- France
| | - Jennifer A. Noble
- Laboratoire de Physique des Lasers
- Atomes et Molécules (PhLAM) UMR 8523 CNRS
- Université de Lille
- France
- Institut des Sciences Moléculaires (ISM) – UMR 5255 CNRS
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques (LCPQ) – IRSAMC UMR 5626 CNRS
- Université de Toulouse
- France
| | - Joëlle Mascetti
- Laboratoire de Chimie et Physique Quantiques (LCPQ) – IRSAMC UMR 5626 CNRS
- Université de Toulouse
- France
| | - Céline Toubin
- Laboratoire de Physique des Lasers
- Atomes et Molécules (PhLAM) UMR 8523 CNRS
- Université de Lille
- France
| |
Collapse
|
4
|
Zhang Y, Chen J, Yang H, Li R, Yu Q. Seasonal variation and potential source regions of PM 2.5-bound PAHs in the megacity Beijing, China: Impact of regional transport. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:329-338. [PMID: 28810202 DOI: 10.1016/j.envpol.2017.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 08/06/2017] [Indexed: 05/14/2023]
Abstract
Based on the 12-hour PM2.5 samples collected in an urban site of Beijing, sixteen PM2.5-bound Polycyclic Aromatic Hydrocarbons (PAHs) were measured to investigate the characteristics and potential source regions of particulate PAHs in Beijing. The study period included the summer period in July-August 2014, the APEC source control period during the Asia-Pacific Economic Cooperation (APEC) meeting in the first half of November 2014, and the heating period in the second half of November 2014. Compared to PM2.5, sum of 16 PM2.5-bound PAHs exhibited more significant seasonal variation with the winter concentration largely exceeding the summer concentration. Temperature appeared to be the most crucial meteorological factor during the summer and heating periods, while PM2.5-bound PAHs showed stronger correlation with relative humidity and wind speed during the APEC source control period. Residential heating significantly increased the concentrations of higher-ring-number (≥4) PAHs measured in PM2.5 fraction. Potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analysis as well as the (3 + 4) ring/(5 + 6) ring PAH ratio analysis revealed the seasonal difference in the potential source area of PM2.5-bound PAHs in Beijing. Southern Hebei was the most likely potential source area in the cold season. Using black carbon (BC) and carbon monoxide (CO) as the PAH tracers, regional residential, transportation and industry emissions all contributed to the PAH pollution in Beijing.
Collapse
Affiliation(s)
- Yuepeng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Hainan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Rongjia Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Krausko J, Malongwe JK, Bičanová G, Klán P, Nachtigallová D, Heger D. Spectroscopic Properties of Naphthalene on the Surface of Ice Grains Revisited: A Combined Experimental–Computational Approach. J Phys Chem A 2015; 119:8565-78. [DOI: 10.1021/acs.jpca.5b00941] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo
nam. 2, 166 10 Prague, Czech Republic
| | | |
Collapse
|
6
|
Gladich I, Habartová A, Roeselová M. Adsorption, Mobility, and Self-Association of Naphthalene and 1-Methylnaphthalene at the Water–Vapor Interface. J Phys Chem A 2014; 118:1052-66. [DOI: 10.1021/jp408977b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan Gladich
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo
nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Alena Habartová
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo
nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Martina Roeselová
- Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo
nam. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
7
|
Liyana-Arachchi TP, Zhang Z, Ehrenhauser FS, Avij P, Valsaraj KT, Hung FR. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:53-64. [PMID: 24296764 DOI: 10.1039/c3em00391d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water interface at increasing concentrations of surfactant species.
Collapse
|
8
|
Ray D, Malongwe JK, Klán P. Rate acceleration of the heterogeneous reaction of ozone with a model alkene at the air-ice interface at low temperatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6773-6780. [PMID: 23427835 DOI: 10.1021/es304812t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The kinetics of the ozonation reaction of 1,1-diphenylethylene (DPE) on the surface of ice grains (also called "artificial snow"), produced by shock-freezing of DPE aqueous solutions or DPE vapor-deposition on pure ice grains, was studied in the temperature range of 268 to 188 K. A remarkable and unexpected increase in the apparent ozonation rates with decreasing temperature was evaluated using the Langmuir-Hinshelwood and Eley-Rideal kinetic models, and by estimating the apparent specific surface area of the ice grains. We suggest that an increase of the number of surface reactive sites, and possibly higher ozone uptake coefficients are responsible for the apparent rate acceleration of DPE ozonation at the air-ice interface at lower temperatures. The increasing number of reactive sites is probably related to the fact that organic molecules are displaced more to the top of a disordered interface (or quasi-liquid) layer on the ice surface, which makes them more accessible to the gas-phase reactants. The effect of NaCl as a cocontaminant on ozonation rates was also investigated. The environmental implications of this phenomenon for natural ice/snow are discussed. DPE was selected as an example of environmentally relevant species which can react with ozone. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that its half-life on the ice surface would decrease from ∼5 days at 258 K to ∼13 h at 188 K at submonolayer DPE loadings.
Collapse
Affiliation(s)
- Debajyoti Ray
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | | | | |
Collapse
|
9
|
Liyana-Arachchi TP, Hansel AK, Stevens C, Ehrenhauser FS, Valsaraj KT, Hung FR. Molecular modeling of the green leaf volatile methyl salicylate on atmospheric air/water interfaces. J Phys Chem A 2013; 117:4436-43. [PMID: 23668770 DOI: 10.1021/jp4029694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Methyl salicylate (MeSA) is a green leaf volatile (GLV) compound that is emitted in significant amounts by plants, especially when they are under stress conditions. GLVs can then undergo chemical reactions with atmospheric oxidants, yielding compounds that contribute to the formation of secondary organic aerosols (SOAs). We investigated the adsorption of MeSA on atmospheric air/water interfaces at 298 K using thermodynamic integration (TI), potential of mean force (PMF) calculations, and classical molecular dynamics (MD) simulations. Our molecular models can reproduce experimental results of the 1-octanol/water partition coefficient of MeSA. A deep free energy minimum was found for MeSA at the air/water interface, which is mainly driven by energetic interactions between MeSA and water. At the interface, the oxygenated groups in MeSA tend to point toward the water side of the interface, with the aromatic group of MeSA lying farther away from water. Increases in the concentrations of MeSA lead to reductions in the height of the peaks in the MeSA-MeSA g(r) functions, a slowing down of the dynamics of both MeSA and water at the interface, and a reduction in the interfacial surface tension. Our results indicate that MeSA has a strong thermodynamic preference to remain at the air/water interface, and thus chemical reactions with atmospheric oxidants are more likely to take place at this interface, rather than in the water phase of atmospheric water droplets or in the gas phase.
Collapse
|
10
|
Liyana-Arachchi TP, Stevens C, Hansel AK, Ehrenhauser FS, Valsaraj KT, Hung FR. Molecular simulations of green leaf volatiles and atmospheric oxidants on air/water interfaces. Phys Chem Chem Phys 2013; 15:3583-92. [DOI: 10.1039/c3cp44090g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
|
12
|
Liyana-Arachchi TP, Valsaraj KT, Hung FR. Ice Growth from Supercooled Aqueous Solutions of Benzene, Naphthalene, and Phenanthrene. J Phys Chem A 2012; 116:8539-46. [DOI: 10.1021/jp304921c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thilanga P. Liyana-Arachchi
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Kalliat T. Valsaraj
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Francisco R. Hung
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| |
Collapse
|
13
|
Liyana-Arachchi TP, Valsaraj KT, Hung FR. Adsorption of Naphthalene and Ozone on Atmospheric Air/Ice Interfaces Coated with Surfactants: A Molecular Simulation Study. J Phys Chem A 2012; 116:2519-28. [DOI: 10.1021/jp3002417] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thilanga P. Liyana-Arachchi
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Kalliat T. Valsaraj
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| | - Francisco R. Hung
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana
70803, United States
| |
Collapse
|
14
|
Valsaraj KT. A Review of the Aqueous Aerosol Surface Chemistry in the Atmospheric Context. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojpc.2012.21008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|