1
|
Hassanzadeh-Afruzi F, Salehi MM, Ranjbar G, Esmailzadeh F, Hanifehnejad P, Azizi M, Eshrati Yeganeh F, Maleki A. Utilizing magnetic xanthan gum nanocatalyst for the synthesis of acridindion derivatives via functionalized macrocycle Thiacalix[4]arene. Sci Rep 2023; 13:22162. [PMID: 38092842 PMCID: PMC10719371 DOI: 10.1038/s41598-023-49632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
An effective method for synthesizing acridinedione derivatives using a xanthan gum (XG), Thiacalix[4]arene (TC4A), and iron oxide nanoparticles (IONP) have been employed to construct a stable composition, which is named Thiacalix[4]arene-Xanthan Gum@ Iron Oxide Nanoparticles (TC4A-XG@IONP). The process used to fabricate this nanocatalyst includes the in-situ magnetization of XG, its amine modification by APTES to get NH2-XG@IONP hydrogel, the synthesis of TC4A, its functionalization with epichlorohydrine, and eventually its covalent attachment onto the NH2-XG@IONP hydrogel. The structure of the TC4A-XG@IONP was characterized by different analytical methods including Fourier-transform infrared spectroscopy, X-Ray diffraction analysis (XRD), Energy Dispersive X-Ray, Thermal Gravimetry analysis, Brunauer-Emmett-Teller, Field Emission Scanning Electron Microscope and Vibration Sample Magnetomete. With magnetic saturation of 9.10 emu g-1 and ~ 73% char yields, the TC4As-XG@IONP catalytic system demonstrated superparamagnetic property and high thermal stability. The magnetic properties of the TC4A-XG@IONP nanocatalyst system imparted by IONP enable it to be conveniently isolated from the reaction mixture by using an external magnet. In the XRD pattern of the TC4As-XG@IONP nanocatalyst, characteristic peaks were observed. This nanocatalyst is used as an eco-friendly, heterogeneous, and green magnetic catalyst in the synthesis of acridinedione derivatives through the one-pot pseudo-four component reaction of dimedone, various aromatic aldehydes, and ammonium acetate or aniline/substituted aniline. A combination of 10 mg of catalyst (TC4A-XG@IONP), 2 mmol of dimedone, and 1 mmol of aldehyde at 80 °C in a ethanol at 25 mL round bottom flask, the greatest output of acridinedione was 92% in 20 min.This can be attributed to using TC4A-XG@IONP catalyst with several merits as follows: high porosity (pore volume 0.038 cm3 g-1 and Pore size 9.309 nm), large surface area (17.306 m2 g-1), three dimensional structures, and many catalytic sites to active the reactants. Additionally, the presented catalyst could be reused at least four times (92-71%) with little activity loss, suggesting its excellent stability in this multicomponent reaction. Nanocatalysts based on natural biopolymers in combination with magnetic nanoparticles and macrocycles may open up new horizons for researchers in the field.
Collapse
Affiliation(s)
- Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ghazaleh Ranjbar
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farhad Esmailzadeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Peyman Hanifehnejad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mojtaba Azizi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Faten Eshrati Yeganeh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
2
|
Vatanpour V, Paziresh S, Behroozi AH, Karimi H, Esmaeili MS, Parvaz S, Imanian Ghazanlou S, Maleki A. Fe 3O 4@Gum Arabic modified polyvinyl chloride membranes to improve antifouling performance and separation efficiency of organic pollutants. CHEMOSPHERE 2023; 328:138586. [PMID: 37028725 DOI: 10.1016/j.chemosphere.2023.138586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nanofiltration (NF) membranes are promising media for water and wastewater treatment; however, they suffer from their hydrophobic nature and low permeability. For this reason, the polyvinyl chloride (PVC) NF membrane was modified by iron (III) oxide@Gum Arabic (Fe3O4@GA) nanocomposite. First, Fe3O4@GA nanocomposite was synthesized by the co-precipitation approach and then its morphology, elemental composition, thermal stability, and functional groups were characterized by various analyses. Next, the prepared nanocomposite was added to the casting solution of the PVC membrane. The bare and modified membranes were fabricated by a nonsolvent-induced phase separation (NIPS) method. The characteristics of fabricated membranes were assessed by mechanical strength, water contact angle, pore size, and porosity measurements. The optimum Fe3O4@GA/PVC membrane had a 52 L m-2. h-1. bar-1 water flux with a high flux recovery ratio (FRR) value (82%). Also, the filtration experiment exhibited that the Fe3O4@GA/PVC membrane could remarkably remove organic contaminants, achieving high rejection rates of 98% Reactive Red-195, 95% Reactive Blue-19, and 96% Rifampicin antibiotic by 0.25 wt% of Fe3O4@GA/PVC membrane. According to the results, adding Fe3O4@GA green nanocomposite to the membrane casting solution is a suitable and efficient procedure for modifying NF membranes.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University 34469 Istanbul, Turkiye; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkiye.
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Hamid Karimi
- Central Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran; Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran; Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Sina Parvaz
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran
| | - Siamak Imanian Ghazanlou
- Nano Material Laboratory, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114, Tehran, Iran.
| |
Collapse
|
3
|
Hemmati E, Soleimani-Amiri S, Kurdtabar M. A CMC- g-poly(AA- co-AMPS)/Fe 3O 4 hydrogel nanocomposite as a novel biopolymer-based catalyst in the synthesis of 1,4-dihydropyridines. RSC Adv 2023; 13:16567-16583. [PMID: 37274398 PMCID: PMC10234149 DOI: 10.1039/d3ra01389h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
A CMC-g-poly(AA-co-AMPS)/Fe3O4 hydrogel nanocomposite was successfully designed and prepared via graft copolymerization of AA and AMPS on CMC followed by the cross-linking addition of FeCl3/FeCl2. The synthesized hydrogel nanocomposite was characterized by Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping, thermogravimetric analysis/differential thermal analysis (TGA/DTA), and vibrating sample magnetometry (VSM). The CMC-g-poly(AA-co-AMPS)/Fe3O4 hydrogel nanocomposite was employed as a biocompatible catalyst for the green synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives under thermal and ultrasound-assisted reaction conditions. High efficiency, low catalyst loadings, short reaction time, frequent catalyst recovery, environmental compatibility and mild conditions were found in both methods.
Collapse
Affiliation(s)
- Elmira Hemmati
- Department of Chemistry, Karaj Branch, Islamic Azad University Karaj Iran
| | | | - Mehran Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University Karaj Iran
| |
Collapse
|
4
|
Mahmoudi Asl A, Karami B, Karimi Z. Tungstic acid-functionalized polycalix[4]resorcinarene as a cavity-containing hyper-branched supramolecular and recoverable acidic catalyst in 4 H-pyran synthesis. RSC Adv 2023; 13:13374-13383. [PMID: 37143914 PMCID: PMC10152327 DOI: 10.1039/d3ra00804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/18/2023] [Indexed: 05/06/2023] Open
Abstract
In this study, tungstic acid immobilized on polycalix[4]resorcinarene, PC4RA@SiPr-OWO3H, as a mesoporous acidic solid catalyst was synthesized and investigated for its catalytic activity. Polycalix[4]resorcinarene was prepared via a reaction between formaldehyde and calix[4]resorcinarene, and then the resulting polycalix[4]resorcinarene was modified using (3-chloropropyl)trimethoxysilane (CPTMS) to obtain polycalix[4]resorcinarene@(CH2)3Cl that was finally functionalized with tungstic acid. The designed acidic catalyst was characterized by various methods including FT-IR spectroscopy, energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), elemental mapping analysis and transmission electron microscopy (TEM). The catalyst efficiency was evaluated via the preparation of 4H-pyran derivatives using dimethyl/diethyl acetylenedicarboxylate, malononitrile, and beta-carbonyl compounds, confirmed by FT-IR spectroscopy and 1H and 13C NMR spectroscopy. The synthetic catalyst was introduced as a suitable catalyst with high recycling power in 4H-pyran synthesis.
Collapse
Affiliation(s)
- Aref Mahmoudi Asl
- Department of Chemistry, Yasouj University P. O. Box 353 Yasouj 75918-74831 Iran +98-7431004000
| | - Bahador Karami
- Department of Chemistry, Yasouj University P. O. Box 353 Yasouj 75918-74831 Iran +98-7431004000
| | - Zahra Karimi
- Department of Chemistry, Yasouj University P. O. Box 353 Yasouj 75918-74831 Iran +98-7431004000
| |
Collapse
|
5
|
Maleki B, Jamshidi A, Peiman S, Housaindokht MR. Tri-vanadium Substituted Dawson-type Heteropolytungstate Nanocomposite (g-C 3N 4/Fe 3O 4@P 2W 15V 3) as a Novel, Green, and Recyclable Nanomagnetic Catalyst in the Synthesis of Tetrahydrobenzo[b]Pyrans. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2184398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ali Jamshidi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Tambe A, Dange C, Gavande J, Dhawale R, Kadnor V, Gadhave A, Shirole G. Novel Pumice Supported Perchloric Acid Promoted Protocol for the Synthesis of Tetrahydrobenzo[ b]pyran via Multi-component Approach. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2179080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Adinath Tambe
- Department of Chemistry, A.S.C. College, Rahata, Maharashtra, India
| | - Chaitali Dange
- Department of Chemistry, A.S.C. College, Rahata, Maharashtra, India
| | - Jayshri Gavande
- Department of Chemistry, A.S.C. College, Rahata, Maharashtra, India
| | - Ravindra Dhawale
- Department of Chemistry, A.S.C. College, Rahata, Maharashtra, India
| | - Vijay Kadnor
- Department of Chemistry, A.C.S. College, Satral, Maharashtra, India
| | - Anil Gadhave
- Department of Chemistry, P.V.P. College, Loni, Maharashtra, India
| | - Gopinath Shirole
- Department of Chemistry, A.S.C. College, Rahata, Maharashtra, India
| |
Collapse
|
7
|
Gao J, Hu D, Shen Y, Zheng Y, Liang Y. Optimization of ultrasonic-assisted polysaccharide extraction from Hyperici Perforati Herba using response surface methodology and assessment of its antioxidant activity. Int J Biol Macromol 2023; 225:255-265. [PMID: 36334636 DOI: 10.1016/j.ijbiomac.2022.10.260] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/08/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
This study performed a comprehensive investigation of Hyperici Perforati Herba polysaccharide (HPHP) regarding the development and optimization of extraction methods, elucidation of structure and characteristics, and determination of antioxidant activities. An ultrasonic-assisted extraction method, which offered advantages in terms of the extraction yield and energy efficiency, was developed by response surface analysis. The following optimum conditions were determined: a crushing degree at 65 mesh, ultrasonic time at 50 min and temperature of 43 °C. Through enzyme-mediated deproteination via the Sevag method, activated carbon depigmentation, and DEAE-52 and Sephadex G-100 column elution, three HPHPs were obtained, and their monosaccharides mainly included mannose, galactose, glucose and arabinose. The molar weights were 8.347, 1.199 and 22.426 kDa, respectively. The HPHP structures were an amorphous aggregate of spherical-like shapes with a rough surface of pores and crevices, which presented characteristic Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra of polysaccharides. Their main glucosidic linkage is the α-type configuration. Moreover, HPHPs exhibited strong scavenging activity for DPPH·, ABTS·+, OH· and O2·- radicals; good ferric reducing power; and effective protection against oxidative damage in human cells. Overall, the results of this work underpinned a fundamental understanding of HPHPs, thus providing a potential antioxidant for further research and development.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China.
| | - Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Yang Shen
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yiying Zheng
- School of Chemical Engineering and Pharmaceutics, Henan University of Science & Technology, Luoyang, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| |
Collapse
|
8
|
Hojati SF, Moeini-Eghbali N, Mohammadi S, Jamshidi A, Mohammadi Zonoz F, Maleki B. 1-(4-Sulfonic Acid Butyl)-3-Methylimidazolium Polyoxo Metalate as a Novel Nano-Hybrid Catalyst for the One-Pot Synthesis of 4H-Pyran and Spiro Indoline Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Sara Mohammadi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, Iran
| | - Ali Jamshidi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
9
|
Boroumand H, Alinezhad H, Maleki B, Peiman S. Triethylenetetramine-Grafted Magnetic Graphene Oxide (Fe 3O 4@GO-NH 2) as a Reusable Heterogeneous Catalyst for the One-Pot Synthesis of 2-Amino-4 H-Benzopyran Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2140683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hanieh Boroumand
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Heshmatollah Alinezhad
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Sahar Peiman
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
10
|
Maddila S, Kerru N, Jonnalagadda SB. Recent Progress in the Multicomponent Synthesis of Pyran Derivatives by Sustainable Catalysts under Green Conditions. Molecules 2022; 27:6347. [PMID: 36234888 PMCID: PMC9571218 DOI: 10.3390/molecules27196347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrans are one of the most significant skeletons of oxygen-containing heterocyclic molecules, which exhibit a broad spectrum of medicinal applications and are constituents of diverse natural product analogues. Various biological applications of these pyran analogues contributed to the growth advances in these oxygen-containing molecules. Green one-pot methodologies for synthesising these heterocyclic molecules have received significant attention. This review focuses on the recent developments in synthesising pyran ring derivatives using reusable catalysts and emphasises the multicomponent reaction strategies using green protocols. The advantages of the catalysts in terms of yields, reaction conditions, and recyclability are discussed.
Collapse
Affiliation(s)
- Suresh Maddila
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam 530045, Andhra Pradesh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| | - Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru Campus, Bengaluru 561203, Karnataka, India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| |
Collapse
|
11
|
Kheilkordi Z, Mohammadi Ziarani G, Mohajer F, Badiei A, Sillanpää M. Recent advances in the application of magnetic bio-polymers as catalysts in multicomponent reactions. RSC Adv 2022; 12:12672-12701. [PMID: 35480367 PMCID: PMC9039991 DOI: 10.1039/d2ra01294d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic nanoparticles have attracted significant attention due to their high surface area and superparamagnetic properties. Bio-polymers composed of polysaccharides including alginate, cellulose, glucose, dextrin, chitosan, and starch can be immobilized on magnetic nanoparticles. Bio-polymers can be obtained from natural sources, such as plants, tunicates, algae, and bacteria. Bio-polymers obtained from natural sources have attracted attention due to their various properties including efficient functional groups, non-toxicity, low cost, availability, and biocompatibility. According to the targets of "green chemistry", the application of bio-polymers is effective in reducing pollution. Furthermore, they are excellent agents for the functionalization of magnetic nanoparticles to yield nanomagnetic bio-polymers, which can be applied as recoverable and eco-friendly catalysts in multicomponent reactions.
Collapse
Affiliation(s)
- Zohreh Kheilkordi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran 1993893979 +98 2188613937 +98 2188613937
| | - Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran 1993893979 +98 2188613937 +98 2188613937
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University Tehran Iran 1993893979 +98 2188613937 +98 2188613937
| | - Alireaza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa .,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Malaysia.,International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University Solan 173212 Himachal Pradesh India
| |
Collapse
|
12
|
Ganjali F, Kashtiaray A, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. NANOSCALE ADVANCES 2022; 4:1263-1307. [PMID: 36133673 PMCID: PMC9418160 DOI: 10.1039/d1na00818h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Herein, a concise review of the latest developments in catalytic processes involving organic reactions is presented, focusing on magnetic catalytic systems (MCSs). In recent years, various micro- and nanoscale magnetic catalysts have been prepared through different methods based on optimized reaction conditions and utilized in complex organic synthesis or degradation reactions of pharmaceutical compounds. These biodegradable, biocompatible and eco-benign MCSs have achieved the principles of green chemistry, and thus their usage is highly advocated. In addition, MCSs can shorten the reaction time, effectively accelerate reactions, and significantly upgrade both pharmaceutical synthesis and degradation mechanisms by preventing unwanted side reactions. Moreover, the other significant benefits of MCSs include their convenient magnetic separation, high stability and reusability, inexpensive raw materials, facile preparation routes, and surface functionalization. In this review, our aim is to present at the recent improvements in the structure of versatile MCSs and their characteristics, i.e., magnetization, recyclability, structural stability, turnover number (TON), and turnover frequency (TOF). Concisely, different hybrid and multifunctional MCSs are discussed. Additionally, the applications of MCSs for the synthesis of different pharmaceutical ingredients and degradation of organic wastewater contaminants such as toxic dyes and drugs are demonstrated.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
13
|
Devi L, Gupta A, Kapoor KK. Unexplored Potential of Polyaniline Embedded Barium Chloride Nanocomposite in the Synthesis of Styrylquinoxalin-2(1H)-Ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lalita Devi
- Department of Chemistry, University of Jammu, Jammu, India
| | - Annah Gupta
- Department of Chemistry, University of Jammu, Jammu, India
| | | |
Collapse
|
14
|
An eco-friendly innovative halide and metal-free basic ionic liquid catalyzed synthesis of tetrahydrobenzo [b] pyran derivatives in aqueous media: A sustainable protocol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Halder B, Maity HS, Banerjee F, Kachave AB, Nag A. Water Extract of Tamarindus Indica Seed Ash: An Agro-Waste Green Medium for One-Pot Three-Component Approach for the Synthesis of 4H-Pyran Derivatives. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1858885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bipasa Halder
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Himadri Sekhar Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Flora Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Ahindra Nag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
17
|
Affiliation(s)
- Xiaomin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| |
Collapse
|
18
|
Esmaeili MS, Varzi Z, Taheri-Ledari R, Maleki A. Preparation and study of the catalytic application in the synthesis of xanthenedione pharmaceuticals of a hybrid nano-system based on copper, zinc and iron nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04311-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Design and development of natural and biocompatible raffinose-Cu2O magnetic nanoparticles as a heterogeneous nanocatalyst for the selective oxidation of alcohols. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Synthesis and antibacterial study of 2-amino-4H-pyrans and pyrans annulated heterocycles catalyzed by sulfated polysaccharide-coated BaFe12O19 nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04168-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|