• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4615257)   Today's Articles (1269)   Subscriber (49393)
For: Samsonova JV, Cannavan A, Elliott CT. A Critical Review of Screening Methods for the Detection of Chloramphenicol, Thiamphenicol, and Florfenicol Residues in Foodstuffs. Crit Rev Anal Chem 2012. [DOI: 10.1080/10408347.2012.629951] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Number Cited by Other Article(s)
1
Wang M, Jiang S, Lu XX, Zhang K, Yuan ZY, Xu RL, Zhao BT, Wu AX. Synthesis of primary propargylic alcohols from terminal alkynes using rongalite as the C1 unit. Org Biomol Chem 2023. [PMID: 37449306 DOI: 10.1039/d3ob00902e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
2
Wang S, Du T, Liu S, Li Y, Wang Y, Zhang L, Zhang D, Sun J, Zhu M, Wang J. Dyestuff chemistry auxiliary instant immune-network label strategy for immunochromatographic detection of chloramphenicol. Food Chem 2023;401:134140. [DOI: 10.1016/j.foodchem.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 10/14/2022]
3
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023;219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
4
Sun H, Chen T, Zhang L, Dong D, Li Y, Guo Z. Distribution of florfenicol and norfloxacin in ice during water freezing process: Dual effects by fluorine substituents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022;311:119921. [PMID: 35973450 DOI: 10.1016/j.envpol.2022.119921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
5
Screening of Single-Stranded DNA Aptamer Specific for Florfenicol and Application in Detection of Food Safety. BIOSENSORS 2022;12:bios12090701. [PMID: 36140086 PMCID: PMC9496042 DOI: 10.3390/bios12090701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 01/08/2023]
6
Chen S, Ouyang W, Zhu Y, He L, Zou L, Ao X, Liu S, Yang Y, Li J. Facile Synthesis of N, S-Doped Carbon Quantum Dots from Food Waste as Fluorescent Probe for Sensitive Detection of Thiamphenicol and Its Analogues in Real Food Samples along with an Application in Bioimaging. Foods 2022;11:foods11162414. [PMID: 36010413 PMCID: PMC9407342 DOI: 10.3390/foods11162414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022]  Open
7
David IG, Buleandra M, Popa DE, Cheregi MC, Iorgulescu EE. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. MICROMACHINES 2022;13:mi13050677. [PMID: 35630144 PMCID: PMC9143398 DOI: 10.3390/mi13050677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 12/30/2022]
8
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022;20:1929-1963. [PMID: 35369683 PMCID: PMC8956153 DOI: 10.1007/s10311-022-01416-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/11/2022] [Indexed: 05/08/2023]
9
Tan Z, Yang X, Chen L, Liu Y, Xu HJ, Li Y, Gong B. Biodegradation mechanism of chloramphenicol by Aeromonas media SZW3 and genome analysis. BIORESOURCE TECHNOLOGY 2022;344:126280. [PMID: 34752881 DOI: 10.1016/j.biortech.2021.126280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
10
David IG, Buleandră M, Popa DE, Bercea AM, Ciucu AA. Simple Electrochemical Chloramphenicol Assay at a Disposable Pencil Graphite Electrode by Square Wave Voltammetry and Linear Sweep Voltammetry. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2012480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
11
Zhang Y, Guo P, Wu Y, Wang M, Deng J, Su H, Sun Y. Evaluation of the Acute Effects and Oxidative Stress Responses of Phenicol Antibiotics and Suspended Particles in Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021;40:2463-2473. [PMID: 33939861 DOI: 10.1002/etc.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
12
Wan YP, Liu ZH, Liu Y. Veterinary antibiotics in swine and cattle wastewaters of China and the United States: Features and differences. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021;93:1516-1529. [PMID: 33586826 DOI: 10.1002/wer.1534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
13
Jia BJ, Lin M, Wang JP, Wu NP. Synthesis of molecularly imprinted microspheres and development of a fluorescence method for detection of chloramphenicol in meat. LUMINESCENCE 2021;36:1767-1774. [PMID: 34270836 DOI: 10.1002/bio.4121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022]
14
Guo E, Zhao L, Wu K, Huang W, Zhao K, Li J, Deng A. Simultaneous detection of three amphenicol antibiotics in shrimp and surface water samples by LC–MS/MS using two-antibodies-immobilized immunoaffinity clean-up technique. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1928611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]  Open
15
Amiripour F, Ghasemi S, Azizi SN. Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey. Food Chem 2021;347:129034. [PMID: 33486363 DOI: 10.1016/j.foodchem.2021.129034] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/13/2023]
16
Dinh NX, Pham TN, Huy TQ, Trung DQ, Tuan PA, Khue VQ, Van Quy N, Le VP, Lam VD, Le AT. Ultrasensitive determination of chloramphenicol in pork and chicken meat samples using a portable electrochemical sensor: effects of 2D nanomaterials on the sensing performance and stability. NEW J CHEM 2021. [DOI: 10.1039/d1nj00582k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
17
Sharma R, Krishna H, Raghavarao KSMS. Metal Ion–Enhanced Quantification of Chloramphenicol in Milk Using Imipramine Hydrochloride as Diazo-Coupling Agent. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
18
Detection of chloramphenicol with an aptamer-based colorimetric assay: critical evaluation of specific and unspecific binding of analyte molecules. Mikrochim Acta 2020;187:668. [PMID: 33215333 DOI: 10.1007/s00604-020-04644-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
19
Thompson CS, Traynor IM, Fodey TL, Barnes P, Faulkner DV, Crooks SRH. Screening method for the detection of residues of amphenicol antibiotics in bovine milk by optical biosensor. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020;37:1854-1864. [PMID: 32910860 DOI: 10.1080/19440049.2020.1809718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
20
Luo L, Zhou X, Pan Y, Zhao K, Deng A, Li J. A simple and sensitive flow injection chemiluminescence immunoassay for chloramphenicol based on gold nanoparticle-loaded enzyme. LUMINESCENCE 2020;35:877-884. [PMID: 32150663 DOI: 10.1002/bio.3795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023]
21
Wang Z, Luo J, Zhao Y, Luo P. Development of an enzyme-linked immunosorbent assay for the determination of florfenicol and florfenicol amine in eggs. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1786671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]  Open
22
An Ultrasensitive Fluorescence Immunoassay Based on Magnetic Separation and Upconversion Nanoparticles as Labels for the Detection of Chloramphenicol in Animal-Derived Foods. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01820-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
23
He F, Ma W, Zhong D, Yuan Y. Degradation of chloramphenicol by α-FeOOH-activated two different double-oxidant systems with hydroxylamine assistance. CHEMOSPHERE 2020;250:126150. [PMID: 32088614 DOI: 10.1016/j.chemosphere.2020.126150] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
24
Synthesis of deuterium-labeled DL-threo-thiamphenicol. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
25
Patyra E, Kwiatek K. Quantification and Analysis of Trace Levels of Phenicols in Feed by Liquid Chromatography–Mass Spectrometry. Chromatographia 2020. [DOI: 10.1007/s10337-020-03890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
26
Hendrickson OD, Zvereva EA, Popravko DS, Zherdev AV, Xu C, Dzantiev BB. An immunochromatographic test system for the determination of lincomycin in foodstuffs of animal origin. J Chromatogr B Analyt Technol Biomed Life Sci 2020;1141:122014. [PMID: 32086145 DOI: 10.1016/j.jchromb.2020.122014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022]
27
Hydrothermal Enhanced Nanoscale Zero-Valent Iron Activated Peroxydisulfate Oxidation of Chloramphenicol in Aqueous Solutions: Fe-Speciation Analysis and Modeling Optimization. WATER 2019. [DOI: 10.3390/w12010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
28
Rimkus GG, Huth T, Harms D. Screening of stereoisomeric chloramphenicol residues in honey by ELISA and CHARM ® II test - the potential risk of systematically false-compliant (false negative) results. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019;37:94-103. [PMID: 31697202 DOI: 10.1080/19440049.2019.1682685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
29
Ma X, Li H, Qiao S, Huang C, Liu Q, Shen X, Geng Y, Xu W, Sun C. A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol. Food Chem 2019;302:125359. [PMID: 31442702 DOI: 10.1016/j.foodchem.2019.125359] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 01/06/2023]
30
Ma P, Ye H, Deng J, Khan IM, Yue L, Wang Z. A fluorescence polarization aptasensor coupled with polymerase chain reaction and streptavidin for chloramphenicol detection. Talanta 2019;205:120119. [PMID: 31450463 DOI: 10.1016/j.talanta.2019.120119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 01/28/2023]
31
Patyra E, Kwiatek K. HPLC-DAD analysis of florfenicol and thiamphenicol in medicated feedingstuffs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019;36:1184-1190. [PMID: 31140948 DOI: 10.1080/19440049.2019.1619943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
32
Fang Q, Li Y, Miao X, Zhang Y, Yan J, Yu T, Liu J. Sensitive detection of antibiotics using aptamer conformation cooperated enzyme-assisted SERS technology. Analyst 2019;144:3649-3658. [PMID: 31074470 DOI: 10.1039/c9an00190e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
33
Detection of chloramphenicol in meat with a chemiluminescence resonance energy transfer platform based on molecularly imprinted graphene. Anal Chim Acta 2019;1063:136-143. [PMID: 30967177 DOI: 10.1016/j.aca.2019.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/30/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
34
Li C, Luo F, Duan H, Dong F, Chen X, Feng M, Zhang Z, Cizmas L, Sharma VK. Degradation of chloramphenicol by chlorine and chlorine dioxide in a pilot-scale water distribution system. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
35
Jia BJ, Huang J, Liu JX, Wang JP. Detection of chloramphenicol in chicken, pork and fish with a molecularly imprinted polymer-based microtiter chemiluminescence method. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019;36:74-83. [PMID: 30620682 DOI: 10.1080/19440049.2018.1562238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
36
Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens Bioelectron 2019;124-125:167-175. [DOI: 10.1016/j.bios.2018.10.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023]
37
Guidi LR, Tette PAS, Gloria MBA, Fernandes C. A simple and rapid LC-MS/MS method for the determination of amphenicols in Nile tilapia. Food Chem 2018;262:235-241. [PMID: 29751915 DOI: 10.1016/j.foodchem.2018.04.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 04/10/2018] [Accepted: 04/21/2018] [Indexed: 10/17/2022]
38
Sadeghi AS, Mohsenzadeh M, Abnous K, Taghdisi SM, Ramezani M. Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk. Talanta 2018;182:193-201. [PMID: 29501140 DOI: 10.1016/j.talanta.2018.01.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/05/2023]
39
Chughtai MI, Maqbool U, Iqbal M, Shah MS, Fodey T. Development of in-house ELISA for detection of chloramphenicol in bovine milk with subsequent confirmatory analysis by LC-MS/MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017;52:871-879. [PMID: 28922623 DOI: 10.1080/03601234.2017.1361771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
40
Lei X, Xu L, Song S, Liu L, Kuang H. Development of an ultrasensitive ic-ELISA and immunochromatographic strip assay for the simultaneous detection of florfenicol and thiamphenicol in eggs. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1371114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]  Open
41
Wang J, Wang Q, Zheng Y, Peng T, Yao K, Xie S, Zhang X, Xia X, Li J, Jiang H. Development of a quantitative fluorescence-based lateral flow immunoassay for determination of chloramphenicol, thiamphenicol and florfenicol in milk. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1359498] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
42
Guidi LR, Tette PA, Fernandes C, Silva LH, Gloria MBA. Advances on the chromatographic determination of amphenicols in food. Talanta 2017;162:324-338. [DOI: 10.1016/j.talanta.2016.09.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
43
Guidi LR, Santos FA, Ribeiro ACSR, Fernandes C, Silva LHM, Gloria MBA. A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish. Talanta 2016;163:85-93. [PMID: 27886775 DOI: 10.1016/j.talanta.2016.10.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 11/26/2022]
44
Trivedi DK, Hollywood KA, Rattray NJW, Ward H, Trivedi DK, Greenwood J, Ellis DI, Goodacre R. Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst 2016;141:2155-64. [PMID: 26911805 PMCID: PMC4819684 DOI: 10.1039/c6an00108d] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
45
Pilehvar S, Gielkens K, Trashin SA, Dardenne F, Blust R, De Wael K. (Electro)Sensing of Phenicol Antibiotics—A Review. Crit Rev Food Sci Nutr 2015;56:2416-29. [DOI: 10.1080/10408398.2013.845140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
46
Salmon Muscle Adherence to Polymer Coatings and Determination of Antibiotic Residues by Reversed-Phase High-Performance Liquid Chromatography Coupled to Selected Reaction Monitoring Mass Spectrometry, Atomic Force Microscopy, and Fourier Transform Infrared Spectroscopy. INT J POLYM SCI 2015. [DOI: 10.1155/2015/721769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
47
Fast extraction of amphenicols residues from raw milk using novel fabric phase sorptive extraction followed by high-performance liquid chromatography-diode array detection. Anal Chim Acta 2015;855:41-50. [DOI: 10.1016/j.aca.2014.11.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/17/2014] [Accepted: 11/29/2014] [Indexed: 11/23/2022]
48
Scientific Opinion on Chloramphenicol in food and feed. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3907] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]  Open
49
Yikilmaz Y, Filazi A. Detection of Florfenicol Residues in Salmon Trout via GC–MS. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9982-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Filazi A, Sireli U, Yurdakok B, Aydin F, Kucukosmanoglu A. Depletion of florfenicol and florfenicol amine residues in chicken eggs. Br Poult Sci 2014;55:460-5. [DOI: 10.1080/00071668.2014.935701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA