1
|
Biesen L, Müller TJJ. The complexometric behavior of selected aroyl-S,N-ketene acetals shows that they are more than AIEgens. Sci Rep 2024; 14:12565. [PMID: 38822000 PMCID: PMC11143253 DOI: 10.1038/s41598-024-62100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Using the established synthetic methods, aroyl-S,N-ketene acetals and subsequent bi- and multichromophores can be readily synthesized. Aside from pronounced AIE (aggregation induced emission) properties, these selected examples possess distinct complexometric behavior for various metals purely based on the underlying structural motifs. This affects the fluorescence properties of the materials which can be readily exploited for metal ion detection and for the formation of different metal-aroyl-S,N-ketene acetal complexes that were confirmed by Job plot analysis. In particular, gold(I), iron(III), and ruthenium (III) ions reveal complexation enhanced or quenched emission. For most dyes, weakly coodinating complexes were observed, only in case of a phenanthroline aroyl-S,N-ketene acetal multichromophore, measurements indicate the formation of a strongly coordinating complex. For this multichromophore, the complexation results in a loss of fluorescence intensity whereas for dimethylamino-aroyl-S,N-ketene acetals and bipyridine bichromophores, the observed quantum yield is nearly tripled upon complexation. Even if no stable complexes are formed, changes in absorption and emission properties allow for a simple ion detection.
Collapse
Affiliation(s)
- Lukas Biesen
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, 40225, Düsseldorf, Germany
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas J J Müller
- Heinrich-Heine-Universität Düsseldorf, Math.-Nat. Fakultät, Institut für Organische Chemie und Makromolekulare Chemie, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
2
|
Gul Z, Iqbal A, Shoukat J, Anila A, Rahman R, Ullah S, Zeeshan M, Ashiq MS, Altaf AA. Nanoparticles Based Sensors for Cyanide Ion Sensing, Basic Principle, Mechanism and Applications. Crit Rev Anal Chem 2023:1-15. [PMID: 38117472 DOI: 10.1080/10408347.2023.2295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Rapidly detecting potentially toxic ions such as cyanide is paramount to maintaining a sustainable and environmentally friendly ecosystem for living organisms. In recent years, molecular sensors have been developed to detect cyanide ions, which provide a naked-eye or fluorometric response, making them an ideal choice for cyanide sensing. Nanosensors, on the other hand, have become increasingly popular over the last two decades due water solubility, quick reaction times, environmental friendliness, and straightforward synthesis. Researchers have designed many nanosensors and successfully utilized them for the detection of cyanide ions in various environmental samples. The majority of these sensors use gold and silver-based nanosensors because cyanide ions have a high affinity for these metals ions and coordinate through covalent bonds. These metal nanoparticles are typically combined or coated with fluorescent materials, which quench their fluorescence. However, adding cyanide ions etches out the metal nanoparticles, restoring their fluorescence/color. This principle has been followed by most nanosensors used for cyanide ion sensing. In this review, different nanosensors and their sensing mechanisms are discussed in relation to cyanide ions. The primary purpose is to compare the sensing abilities of these sensors, mainly their sensitivity, advantages, application and to find out research gaps for future work. In this review paper, the development made in nanosensors in the last thirteen years (2010-2023) was discussed and the nanosensors for cyanide ions were compared with molecular sensors while the nanosensors with the excellent limit of detection were highlighted.
Collapse
Affiliation(s)
- Zarif Gul
- Departments of Chemistry, Government Degree College Gulabad, Gulabad, Khyber Pakhtunkhwa, Pakistan
| | - Aqsa Iqbal
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Javeria Shoukat
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Anila Anila
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Rafia Rahman
- Department of Biological sciences, National University of Medical Science, Rawalpindi, Punjab, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, Kohsar University, Murree, Punjab, Pakistan
| | - Muhammad Zeeshan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
3
|
Kumar A. Recent Development in Fluorescent Probes for the Detection of Hg 2+ Ions. Crit Rev Anal Chem 2023; 54:3269-3312. [PMID: 37517076 DOI: 10.1080/10408347.2023.2238066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Mercury, a highly toxic heavy metal, poses significant environmental and health risks, necessitating the development of effective and responsive techniques for its detection. Organic chromophores, particularly small molecules, have emerged as promising materials for sensing Hg2+ ions due to their high selectivity, sensitivity, and ease of synthesis. In this review article, we provide a systematic overview of recent advancements in the field of fluorescent chemosensors for Hg2+ ions detection, including rhodamine derivatives, Schiff bases, coumarin derivatives, naphthalene derivatives, BODIPY, BOPHY, naphthalimide, pyrene, dicyanoisophorone, bromophenol, benzothiazole flavonol, carbonitrile, pyrazole, quinoline, resorufin, hemicyanine, monothiosquaraine, cyanine, pyrimidine, peptide, and quantum/carbon dots probes. We discuss their detection capabilities, sensing mechanisms, limits of detection, as well as the strategies and approaches employed in their design. By focusing on recent studies conducted between 2022 and 2023, this review article offers valuable insights into the performance and advancements in the field of fluorescent chemosensors for Hg2+ ions detection.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, D.B.S. (PG) College Dehradun, Uttarakhand, India
| |
Collapse
|
4
|
Hasan Alzaimoor EF, Khan E. Metal-Organic Frameworks (MOFs)-Based Sensors for the Detection of Heavy Metals: A Review. Crit Rev Anal Chem 2023; 54:3016-3037. [PMID: 37347646 DOI: 10.1080/10408347.2023.2220800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Metal-organic-frameworks (MOFs) have emerged as promising candidates in different scientific disciplines owing to their intriguing characteristics. Their unique structural properties, including large surface area to volume ratio with multi-functionalities and ultra-high porosity, tunability, uniformity, and easy derivation and fabrication, render them effective materials for sensing applications. The detection of heavy metals in different environmental matrices using various MOF-based sensors is in practice. They include luminescent, electrochemical, electrochemiluminescent, colorimetric, and surface-enhanced Raman scattering, are of great interest. This review elaborates on selected synthetic methods for the fabrication of MOF-based sensors, modification routes for tailoring and enhancing the desired properties, basic characterization techniques, and their limitations in the detection of heavy metals. Also, it emphasizes the use of various types of MOF-based sensors alternatively for the detection of different heavy metals such as Fe(III), Cr(III), Hg(II), Cd(II), and Pb(II) in addition to a normal metal Al(III). A collection of recent references is provided for researchers interested in such applications. Results from the literature have been summarized in tables which give an easy comparison and will help to develop efficient materials.
Collapse
Affiliation(s)
| | - Ezzat Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
5
|
Hanif M, Noor A, Muhammad M, Ullah F, Tahir MN, Khan GS, Khan E. Complexes of 2-Amino-3-methylpyridine and 2-Amino-4-methylbenzothiazole with Ag(I) and Cu(II): Structure and Biological Applications. INORGANICS 2023. [DOI: 10.3390/inorganics11040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Coordination complexes (1–4) of 2-amino-4-methylbenzothiazole and 2-amino-3-methylpyridine with Cu(CH3COO)2 and AgNO3 were prepared and characterized by UV/Vis and FT-IR spectroscopy. The molecular structure for single crystals of silver complexes (2 and 4) were determined by X-ray diffraction. The coordination complex (2) is monoclinic with space group P21/c, wherein two ligands are coordinated to a metal ion, affording distorted trigonal geometry around the central Ag metal ion. The efficient nucleophilic center, i.e., the endocyclic nitrogen of the organic ligand, binds to the silver metal. Ligands are coordinated to adopt cis arrangement, predominantly due to steric reasons. The O(2) and O(3) atoms of the NO3− group further play an important role in such type of ligand arrangement by hydrogen bonding with the NH2 group of ligands. Complex (4) is orthorhombic, P212121, comprising two molecules of 2-amino-3-methylpyridine as ligand coordinated with the metal ion, affording a polymeric structure. The coordination behavior of the ligand is identical to that in complex 2, wherein ring nitrogen is coordinated to the metal center and bridged to another metal ion through an NH2 group. The resulting product is polymeric in nature with the Ag metal in the backbone and ligand as the bridge. Compounds (2–4) were found to be luminescent, while 1 did not show such activity. All compounds were screened for their preliminary biological activities such as antibacterial, antioxidant and enzyme inhibition. Compounds exhibited moderate activity in these tests.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Awal Noor
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hassa 31982, Saudi Arabia
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | | | - Gul Shahzada Khan
- Department of Chemistry, College of Science, University of Bahrain, Main Campus, Sakhir 32038, Bahrain
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Main Campus, Sakhir 32038, Bahrain
| |
Collapse
|
6
|
Mohammad Abu-Taweel G, Alharthi SS, Al-Saidi HM, Babalghith AO, Ibrahim MM, Khan S. Heterocyclic Organic Compounds as a Fluorescent Chemosensor for Cell Imaging Applications: A Review. Crit Rev Anal Chem 2023; 54:2538-2553. [PMID: 36880659 DOI: 10.1080/10408347.2023.2186695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Fluorometric determination of different biologically, industrially, and environmentally important analytes is a powerful technique because this technique has excellent selectivity, high sensitivity, rapid photoluminescence response, low cost, applicability to bioimaging, and low detection limit. Fluorescence imaging is a powerful technique for screening different analytes in the living system. Heterocyclic organic compounds have been extensively used as a fluorescence chemosensor for the determination of different biologically important cations like Co2+, Zn2+, Cu2+, Hg2+, Ag+, Ni2+, Cr3+, Al3+, Pd2+, Fe3+ Pt2+, Mn2+, Sn2+, Pd2+, Au3+, Pd2+, Cd2+, Pb2+ and other ions in biological and environmental systems. These compounds also showed significant biological applications such as anti-cancer, anti-ulcerogenic, antifungal, anti-inflammatory, anti neuropathic, antihistaminic, antihypertensive, analgesic, antitubercular, antioxidant, antimalarial, antiparasitic, antiglycation, antiviral anti-obesity, and antibacterial potency. In this review, we summarize the heterocyclic organic compounds based on fluorescent chemosensors and their applications in bioimaging studies for the recognition of different biologically important metal ions.
Collapse
Affiliation(s)
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department College of Medicine, Umm Al-Qura University Makkah, Saudi Arabia
| | - Munjed M Ibrahim
- Department of Pharmaceutical Chemistry, College of pharmacy, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
7
|
Song H, Huo M, Zhou M, Chang H, Li J, Zhang Q, Fang Y, Wang H, Zhang D. Carbon Nanomaterials-Based Electrochemical Sensors for Heavy Metal Detection. Crit Rev Anal Chem 2022; 54:1987-2006. [PMID: 36463557 DOI: 10.1080/10408347.2022.2151832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Heavy metals are commonly found in a wide range of environmental settings metals, but the potential toxicity associated with heavy metal exposure represents a major threat to global public health. It is thus vital that approaches to efficiently, reliably, and effectively detecting heavy metals in a range of sample types be established. Carbon nanomaterials offer many advantageous properties that make them well-suited to the design of sensitive, selective, easy-to-operate electrochemical biosensors ideal for detecting heavy metal ions. The present review offers an overview of recent progress in the development of carbon nanomaterial-based electrochemical sensors used to detect heavy metals. In addition to providing a detailed discussion of certain carbon nanomaterials such as carbon nanotubes, graphene, carbon fibers, carbon quantum dots, carbon nanospheres, mesoporous carbon, and Graphdiyne, we survey the challenges and future directions for this field. Overall, the studies discussed herein suggest that the further development of carbon nanomaterial-modified electrochemical sensors will support the integration of increasingly advanced sensor platforms to aid in detecting heavy metals in foods, environmental samples, and other settings, thereby benefitting human health and society as a whole.
Collapse
Affiliation(s)
- Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|