1
|
Chen R, Han Y, Bai L, Wang M, Yan H. Enhanced detection of catecholamines in human urine using Cis-diol-microporous organic networks with PT-SPE and HPLC-MS/MS. J Chromatogr A 2024; 1736:465408. [PMID: 39388781 DOI: 10.1016/j.chroma.2024.465408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
A novel cis-diol-microporous organic networks (MONs-2OH) material was synthesized via room temperature and Sonogashira coupling reactions, which exhibits exceptional adsorption properties for catecholamines (CAs). MONs-2OH demonstrates robust hydrogen bonding and π-π stacking interactions, crucial for effective adsorption. The MONs-2OH was incorporated into pipette tip solid-phase extraction and developed a new method for detecting CAs in human urine using HPLC-MS/MS. Characterization of the adsorbent revealed its high stability, large specific surface area, abundant phenolic hydroxyl groups, rapid extraction speed, and superior adsorption efficiency. The method achieved a wide linear range (0.5-500 ng/mL), low detection limits (0.06-0.26 ng/mL), high accuracy (90.4 %-99.4 %), and excellent precision (RSD ≤ 10 %). Comparative studies showed MONs-2OH outperforms commercial adsorbents in terms of recovery and adsorption capacity. The results underscore the potential of MONs-2OH for rapid and sensitive CAs determination, offering significant advantages for the auxiliary diagnosis of depression and enhancing the application of PT-SPE in sample pretreatment.
Collapse
Affiliation(s)
- Rong Chen
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yehong Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Ligai Bai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Mingyu Wang
- Department of Pharmacy, Affiliated Hospital of Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Zhang M, Shang R, Hong Z, Zhang H, Yu K, Kan G, Xiong H, Song D, Jiang Y, Jiang J. One-step online analysis of antibiotics in highly saline seawater by nano-based slug-flow microextraction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134039. [PMID: 38492401 DOI: 10.1016/j.jhazmat.2024.134039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The transition to mass spectrometry (MS) in the analysis of antibiotics in the marine environment is highly desirable, particularly in the enhancement of sensitivity for high-salinity (3.5 wt%) seawater samples. However, the persistence of complex operational procedures poses substantial challenges to this transition. In this study, a rapid method for the online analysis of antibiotics in seawater samples via nano-electrospray ionization (nESI) MS based on slug-flow microextraction (SFME) has been proposed. Comparisons with other methods, complex laboratory setups for sample processing are now seamlessly integrated into a single online step, completing the entire process, including desalination and detection, SFME-nESI-MS provides faster results in less than 2 min while maintaining sensitivity comparable to that of other detection methods. Using SFME-nESI, six antibiotics in high-salinity (3.5 wt%) seawater samples have been determined in both positive and negative ion modes. The proposed method successfully detected clarithromycin, ofloxacin, and sulfadimidine in seawater within a linear range of 1-1000 ng mL-1 and limit of detection (LOD) of 0.23, 0.06, and 0.28 ng mL-1, respectively. The method recovery was from 92.8% to 107.3%, and the relative standard deviation was less than 7.5%. In addition, the response intensity of SFME-nESI-treated high-salinity (3.5 wt%) samples surpassed that of untreated medium-salinity (0.35 wt%) samples by two to five orders of magnitude. This advancement provides an exceptionally simplified protocol for the online rapid, highly sensitive, and quantitative determination of antibiotics in high-salinity (3.5 wt%) seawater.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ruonan Shang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Ziying Hong
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China
| | - Huixia Xiong
- Shanxi Provincial Center for Disease Control and Prevention, Xiaonan Guan Street 8, Taiyuan 030001, China
| | - Daqian Song
- College of Chemistry, Jilin University, Jilin, Changchun 130012, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China.
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (WeiHai), Weihai, Shandong 264209, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
3
|
Zhang M, Wang Y, Jiang J, Jiang Y, Song D. The Role of Catecholamines in the Pathogenesis of Diseases and the Modified Electrodes for Electrochemical Detection of Catecholamines: A Review. Crit Rev Anal Chem 2024:1-22. [PMID: 38462811 DOI: 10.1080/10408347.2024.2324460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catecholamines (CAs), which include adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that critically regulate the cardiovascular system, metabolism, and stress response in the human body. The abnormal levels of these molecules can lead to the development of various diseases, including pheochromocytoma and paragangliomas, Alzheimer's disease, and Takotsubo cardiomyopathy. Due to their low cost, high sensitivity, flexible detection strategies, ease of integration, and miniaturization, electrochemical techniques have been extensively employed in the detection of CAs, surpassing traditional analytical methods. Electrochemical detection of CAs in real samples is challenging due to the tendency of poisoning electrode. Chemically modified electrodes have been widely used to solve the problems of poor sensitivity and selectivity faced by bare electrodes. There are a few articles that provide an overview of electrochemical detection and efficient enrichment of CAs, but there is a dearth of updates on the role of CAs in the pathogenesis of diseases. Additionally, there is still a lack of systematic synthesis with a focus on modified electrodes for electrochemical detection. Thus, this review provides a summary of the recent clinical pathogenesis of CAs and the modified electrodes for electrochemical detection of CAs published between 2017 and 2022. Moreover, challenges and future perspectives are also highlighted. This work is expected to provide useful guidance to researchers entering this interdisciplinary field, promoting further development of CAs pathogenesis, and developing more novel chemically modified electrodes for the detection of CAs.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yimeng Wang
- Elite Engineer School, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, Jilin, China
| |
Collapse
|