1
|
Zhu S, Wang X, Jin Y, Peng N, Wei Z, Lian J, Liu S, Ding Y, Zhou X. Dual cryoprotection of gelatin-tea polyphenol microgels on surimi by targeting for ice inhibition and component stabilization. Food Chem 2025; 464:141684. [PMID: 39432946 DOI: 10.1016/j.foodchem.2024.141684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
In this study, the gelatine-polyphenol microgels with dual cryoprotective roles were constructed by regulating the ratio of gelatin to tea polyphenols (1:50-1:250). The physicochemical attributes, ice recrystallization inhibition ability of microgels, and their dosage effects (1 %, 2.5 % and 4 %, w/w) on surimi were investigated. The results indicated that increased gelatin caused the reduced size and enhanced viscosity of microgels. Except for high viscosity and antioxidant activity, the GP-5 group also showed great IRI ability with minimum size distribution (125-214 μm2) of ice crystals. Furthermore, 2.5 G group and S group had a comparable TVB-N (3.81, 4.34 mg/100 g), TBARS (1.18, 1.32 mg/kg), sulfhydryl contents (29.52, 25.48 μmol/g) and Ca2+-ATPase activity (0.44, 0.36 μmolPi/gprot/h). Compared to uneven free water distribution of control group, S and 2.5 G group show more even immobilized-water distribution. Thereafter, the dual cryoprotective functions of microgels in surimi offer valuable insights for the development of effective antifreeze agents.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| | - Xuan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ningning Peng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Zhengpeng Wei
- Ministry of Agriculture Key Laboratory of Frozen Prepared Marine Foods Processing, Qingdao, China
| | - Jing Lian
- Comprehensive Service Center of Market Supervision and Management of Rongcheng, Shandong, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| |
Collapse
|
2
|
Li Y, Kong H, Li C, Ban X, Gu Z, Lu Y, Li Z. Mitigating the Effects of Starch Derivatives on Cold Denaturation of Gluten Protein: Insights from Hydration Capacity and Conformation Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26451-26461. [PMID: 39555967 DOI: 10.1021/acs.jafc.4c08121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mitigating the cold denaturation of gluten protein during frozen storage is crucial for the quality improvement of frozen cereal products. Our previous study observed that starch derivatives, especially short-clustered maltodextrin (SCMD), could significantly improve frozen dough quality, alleviating the deterioration of gluten-network structure. To further reveal the cryoprotection mechanism of SCMD on gluten protein during frozen storage, the modulatory roles of SCMD in the hydration capacity and conformation behavior of gluten protein were explored, in comparison with DE2 maltodextrin (MD) and pregelatinized starch (PGS). Results demonstrated that SCMD significantly facilitated the reservation of bound water and decreased the surface hydrophobicity of gluten protein after 8 weeks of frozen storage. Remarkable effects of SCMD on stabilizing the secondary structure and microenvironment of aromatic amino acids of gluten protein were observed. Further mechanistic investigation showed that when the temperature dropped from 300 to 250 K, the short-clustered structure could stabilize the α-helixes more evidently than linear structures through hydrogen bonds with water and steric hindrance effect, rather than directly with protein. Our findings will provide novel insights into the cold denaturation of gluten protein and useful guidance in selecting the optimum structure to suppress this denaturation, improving the quality of frozen cereal products.
Collapse
Affiliation(s)
- Yang Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
- College of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Lu
- College of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212001, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
3
|
Liang Y, Cao Z, Wang J, Jie Y, Liu H, He B, Wang J. Effects of sanxan on water and ice crystal status of salt free frozen cooked noodles during freeze-thaw cycles. Food Chem 2024; 448:139137. [PMID: 38569406 DOI: 10.1016/j.foodchem.2024.139137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
This study compared four biocolloids (sanxan, xanthan gum, curdlan, and guar gum) in different concentrations to replace NaCl in improving the recooking quality of salt free frozen cooked noodles (SF-FCNs). Sanxan outperformed NaCl and other biocolloids significantly improving the firmness (21.0%), chewiness (63.5%), and toughness (15.4%) of SF-FCNs after 10 freeze-thaw (FT) cycles. The results of the freezing-thawing curves showed SF-FCNs had prior FT stability when sanxan was added at 1.2%. Subsequently, the result of differential scanning calorimetry and nuclear magnetic resonance revealed sanxan reduced the content and mobility of freezable water while increasing the content of bound water. The scanning electron microscope, mercury intrusion, and optical microscopy analyses indicated that sanxan reduced the size and volume of ice crystals and the structural damage of SF-FCNs by controlling the water. The work contributes to a theoretical framework for enhancing SF-FCNs quality through precise water and ice crystal control.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihui Cao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiayi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangyi Jie
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Feng S, Yi J, Wu X, Ma Y, Bi J. Effects of cell morphology on the textural attributes of fruit cubes in freeze-drying: Apples, strawberries, and mangoes as examples. J Texture Stud 2023; 54:775-786. [PMID: 37248614 DOI: 10.1111/jtxs.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
The influence of cell morphology on the textural characteristic of freeze-dried apple, strawberry, and mango cubes was evaluated. Corresponding restructured cube samples without intact cell morphology were prepared as controls. Results indicated that the presence of cell morphology strengthened the shrinkage and collapse of samples during freeze-drying, especially in mangoes due to the high content of sugar. Intact cell morphology was found in natural fruit cubes after freeze-drying by scanning electron microscopy (SEM) observation, making them exhibit a more regular microporous structure, further resulting in higher hardness than the restructured cubes. However, the intact cell morphology negatively affected the crispness of freeze-dried cubes since it enhanced structural collapse. The freeze-dried samples without cell morphology would destroy the cellulose structure and form a continuous open-pore structure under the concentration effect of ice crystals during freezing, which accelerates the escape of water molecules, increases the drying rate, and avoid collapse. Sensory experiments found that restructured cubes without intact cell morphology exhibited greater comprehensive acceptance, suggesting the potential application of cell morphology disruption in the future freeze-drying industry.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Shang S, Wang Y, Jiang P, Fu B, Dong X, Qi L. Progress in the application of novel cryoprotectants for the stabilization of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:9756-9770. [PMID: 37222573 DOI: 10.1080/10408398.2023.2215874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this review, the physicochemical and conformational changes of myofibrillar proteins (MPs) of freeze-induced mince-based aquatic foods were comprehensively summarized in depth. Studies have demonstrated that temperature fluctuation and long-time freezing negatively affect food quality, resulting in texture alteration, drip fluid, flavor degradation, and nutrition loss due to MPs denaturation, aggregation, and oxidation. Attempts have been made in ice-recrystallization inhibition, freezing point depression, and ice shape and growth control for better cryopreservation. Moreover, to further minimize the quality deterioration, cryoprotectants were acknowledged to reduce the denaturation and aggregation of the MPs effectively. Recently, interest in novel functional ingredients, including oligosaccharides, protein hydrolysates, and natural polyphenols demonstrated excellent cryoprotective effects while avoiding health concerns and undesirable flavor caused by traditional sugar-based or phosphates-based cryoprotectants. Therefore, the present review provides a systematic overview of these low molecular weight multifunctional substances with a particular sequence and highlights their underlying mechanism in the inhibition of ice recrystallization the stabilization of MPs.
Collapse
Affiliation(s)
- Shan Shang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yueyue Wang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Baoshang Fu
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Libo Qi
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Lee S, Jo K, Jeong HG, Choi YS, Kyoung H, Jung S. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Crit Rev Food Sci Nutr 2022; 64:1385-1402. [PMID: 36052640 DOI: 10.1080/10408398.2022.2116557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Freezing is commonly used to extend the shelf life of meat and meat products but may impact the overall quality of those products by inducing structural changes in myofibrillar proteins (MPs) through denaturation, chemical modification, and encouraging protein aggregation. This review covers the effect of freezing on the denaturation of MPs in terms of the effects of ice crystallization on solute concentrations, cold denaturation, and protein oxidation. Freezing-induced denaturation of MPs begins with ice crystallization in extracellular spaces and changes in solute concentrations in the unfrozen water fraction. At typical temperatures for freezing meat (lower than -18 °C), cold denaturation of proteins occurs, accompanied by an alteration in their secondary and tertiary structure. Moreover, the disruption of muscle cells triggers the release of cellular enzymes, accelerating protein degradation and oxidation. To minimize severe deterioration during the freezing and frozen storage of meat, there is a vital need to use an appropriate freezing temperature below the glass transition temperature and to avoid temperature fluctuations during storage to prevent recrystallization. Such an understanding of MP denaturation can be applied to determine the optimum freezing conditions for meat products with highly retained sensory, nutritional, and functional qualities.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
7
|
Rezvankhah A, Emam‐Djomeh Z, Safari M, Salami M, Askari G. Investigating the effects of maltodextrin, gum arabic, and whey protein concentrate on the microencapsulation efficiency and oxidation stability of hemp seed oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Amir Rezvankhah
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Zahra Emam‐Djomeh
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
- Center of Excellence in Biothermodynamics University of Tehran Tehran Iran
| | - Mohammad Safari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| | - Gholamreza Askari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| |
Collapse
|
8
|
Li M, Luckett CR, Wu T. Potent Time-Dependent Ice Recrystallization Inhibition Activity of Cellulose Nanocrystals in Sucrose Solutions. Biomacromolecules 2021; 23:497-504. [PMID: 34914371 DOI: 10.1021/acs.biomac.1c01201] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exploring novel materials with ice recrystallization inhibition (IRI) activity in several fields often starts with a quantitative analysis of ice crystal size change by a splat assay or sandwich assay on a short time scale from 0.5 to 1 h. This study found that this time scale was insufficient to evaluate the IRI activity of cellulose nanocrystals (CNCs) in a model ice cream system-25.0% sucrose solution. No IRI activity was observed in CNCs incubated with ice crystals on a short time scale of 0.5-2.0 h. However, over longer time scales, the growth of ice crystals was entirely inhibited by 1.0% CNCs (between 2 and 24 h) and 0.5% CNCs (between 24 and 72 h) with corresponding final crystal sizes of 25 and 40 μm, respectively. Additionally, ice shaping was observed on a long exposure time, but not on a short exposure time. The findings presented here can be explained by a time-dependent surface coverage of CNCs on ice crystals. The data here indicate the importance of choosing a suitable exposure time for evaluating the IRI activity of new materials and prompt a better understanding of IRI mechanisms involving CNCs.
Collapse
Affiliation(s)
- Min Li
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| | - Curtis R Luckett
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Preparation and Characterization of κ-Carrageenan Modified with Maleic Anhydride and Its Application in Films. Mar Drugs 2021; 19:md19090486. [PMID: 34564148 PMCID: PMC8471587 DOI: 10.3390/md19090486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
In this work, the physicochemical properties of maleic anhydride (MAH)-modified κ-carrageenan (κCar) (MC) were characterized and compared with those of native κ-carrageenan (NC). The Fourier transform infrared spectrum of MC exhibited that κCar was successfully modified. Thermogravimetric analysis indicated that the thermal stability of MC was decreased. When the degree of substitution was 0.032, MC exhibited a low gel strength (759 g/cm2), gelling temperature (33.3 °C), and dehydration rate (60.3%). Given the excellent film-forming ability of κCar, MC films were then prepared and were found to have better mechanical and barrier properties (UV and water) than NC films. With regard to optical properties, MC films could completely absorb UV light in the range of 200–236 nm. The water contact angle of MC films was higher than that of NC films. Moreover, the elongation at break increased from 26.9% to 163%. These physicochemical property changes imply that MC can be employed in polysaccharide-based films.
Collapse
|
10
|
Maeda N. Brief Overview of Ice Nucleation. Molecules 2021; 26:molecules26020392. [PMID: 33451150 PMCID: PMC7828621 DOI: 10.3390/molecules26020392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The nucleation of ice is vital in cloud physics and impacts on a broad range of matters from the cryopreservation of food, tissues, organs, and stem cells to the prevention of icing on aircraft wings, bridge cables, wind turbines, and other structures. Ice nucleation thus has broad implications in medicine, food engineering, mineralogy, biology, and other fields. Nowadays, the growing threat of global warming has led to intense research activities on the feasibility of artificially modifying clouds to shift the Earth’s radiation balance. For these reasons, nucleation of ice has been extensively studied over many decades and rightfully so. It is thus not quite possible to cover the whole subject of ice nucleation in a single review. Rather, this feature article provides a brief overview of ice nucleation that focuses on several major outstanding fundamental issues. The author’s wish is to aid early researchers in ice nucleation and those who wish to get into the field of ice nucleation from other disciplines by concisely summarizing the outstanding issues in this important field. Two unresolved challenges stood out from the review, namely the lack of a molecular-level picture of ice nucleation at an interface and the limitations of classical nucleation theory.
Collapse
Affiliation(s)
- Nobuo Maeda
- Department of Civil & Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, 7-207 Donadeo ICE, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada
| |
Collapse
|
11
|
Neri L, Faieta M, Di Mattia C, Sacchetti G, Mastrocola D, Pittia P. Antioxidant Activity in Frozen Plant Foods: Effect of Cryoprotectants, Freezing Process and Frozen Storage. Foods 2020; 9:E1886. [PMID: 33348739 PMCID: PMC7767136 DOI: 10.3390/foods9121886] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The antioxidant activity (AOA) of plant foods is recognized as an index of the potential health benefits resulting from their consumption. Due to their high perishability and seasonality, plant foods are largely consumed or used as processed products and freezing is one of the technologies used for the production of high-quality foods. However, cell breakages occurring during freezing and frozen storage can lead to the release of antioxidant compounds and their degradation due to chemical and enzymatic oxidation reactions, and thus, they could present a lower antioxidant activity compared to the corresponding fresh product. In this context, process conditions, freezing pre-treatments and the use of cryoprotectants can limit the extent of freeze-induced damages and preserve the antioxidant activity of plant foods. This review collects and discusses the state-of-the-art knowledge on the single and combined effect of freezing and frozen storage conditions on the antioxidant activity of fruits and vegetables as well as the role of cryoprotectants. Classes of compounds responsible for the antioxidant activity of plant foods and the most common methods used for the evaluation of the antioxidant activity in vitro are also presented. The freezing principles and the effects of ice nucleation and crystallization on fruits, vegetables and their main derivatives (juices, pulps) have been addressed to highlight their impact on the AOA of plant foods. The effect of freezing and frozen storage on the AOA of plant foods resulted dependant on a series of intrinsic factors (e.g., composition and structure), while the role of extrinsic processing-related factors, such as freezing and storage temperatures, is ambiguous. In particular, many conflicting results are reported in the literature with a high variability depending on the method of analysis used for the AOA evaluation and data expression (fresh or dry weight). Other intrinsic raw material properties (e.g., cultivar, ripening degree), post-harvest conditions, as well as defrosting methods that in the majority of the studies are scarcely reported, contribute to the aforementioned discrepancies. Finally, due to the limited number of studies reported in the literature and the high variability in product processing, the effect of cryoprotectants on the AOA of plant foods remains unclear.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Pittia
- Faculty of Bioscience and Technologies for Food, Agriculture, and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (L.N.); (M.F.); (C.D.M.); (G.S.); (D.M.)
| |
Collapse
|
12
|
García-Coronado P, Flores-Ramírez A, Grajales-Lagunes A, Godínez-Hernández C, Abud-Archila M, González-García R, Ruiz-Cabrera MA. The Influence of Maltodextrin on the Thermal Transitions and State Diagrams of Fruit Juice Model Systems. Polymers (Basel) 2020; 12:polym12092077. [PMID: 32932726 PMCID: PMC7570093 DOI: 10.3390/polym12092077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/02/2022] Open
Abstract
The state diagram, which is defined as a stability map of different states and phases of a food as a function of the solid content and temperature, is regarded as fundamental approach in the design and optimization of processes or storage procedures of food in the low-, intermediate-, and high-moisture domains. Therefore, in this study, the effects of maltodextrin addition on the freezing points (Tm′, Tm) and glass transition temperatures (Tg′, Tg) required for the construction of state diagrams of fruit juice model systems by using differential scanning calorimetry methods was investigated. A D-optimal experimental design was used to prepare a total of 25 anhydrous model food systems at various dry mass fractions of fructose, glucose, sucrose, pectin, citric acid, and maltodextrin, in which this last component varied between 0 and 0.8. It was found that maltodextrin mass fractions higher than 0.4 are required to induce significant increases of Tg′, Tm′, Tg, and Tm curves. From this perspective, maltodextrin is a good alternative as a cryoprotectant and as a carrier agent in the food industry. Furthermore, solute-composition-based mathematical models were developed to evaluate the influence of the chemical composition on the thermal transitions and to predict the state diagrams of fruit juices at different maltodextrin mass fractions.
Collapse
Affiliation(s)
- Pedro García-Coronado
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, 78290 San Luis Potosí, Mexico; (P.G.-C.); (A.F.-R.); (A.G.-L); (R.G.-G.)
| | - Alma Flores-Ramírez
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, 78290 San Luis Potosí, Mexico; (P.G.-C.); (A.F.-R.); (A.G.-L); (R.G.-G.)
| | - Alicia Grajales-Lagunes
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, 78290 San Luis Potosí, Mexico; (P.G.-C.); (A.F.-R.); (A.G.-L); (R.G.-G.)
| | - Cesar Godínez-Hernández
- Desert Zones Research Institute, Autonomous University of San Luis Potosí, Altair 200, 78377 San Luis Potosí, Mexico;
| | - Miguel Abud-Archila
- National Institute of Technology of Mexico, Technological Institute of Tuxtla Gutiérrez, Street Km 1080, Tuxtla Gutiérrez 29050, Mexico;
| | - Raúl González-García
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, 78290 San Luis Potosí, Mexico; (P.G.-C.); (A.F.-R.); (A.G.-L); (R.G.-G.)
| | - Miguel A. Ruiz-Cabrera
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, Manuel Nava 6, 78290 San Luis Potosí, Mexico; (P.G.-C.); (A.F.-R.); (A.G.-L); (R.G.-G.)
- Correspondence:
| |
Collapse
|
13
|
Walayat N, Xiong H, Xiong Z, Moreno HM, Nawaz A, Niaz N, Randhawa MA. Role of Cryoprotectants in Surimi and Factors Affecting Surimi Gel Properties: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1768403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Noman Walayat
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhouyi Xiong
- Wuhan Academy of Agricultural Sciences, Fisheries Research Institute, Wuhan China
| | - Helena M. Moreno
- Department of Food Technology, Veterinary Faculty, Complutense University, Madrid, Spain
| | - Asad Nawaz
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadia Niaz
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Atif Randhawa
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
14
|
Sharma S, Majumdar RK, Siddhnath K, Mehta NK, Saha A, Gupta S. Effects of Partial and Complete Replacement of Synthetic Cryoprotectant with Carrot (Daucus carota) Concentrated Protein on Stability of Frozen Surimi. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1651807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - K. Siddhnath
- College of Fisheries, CAU (I), Lembucherra, Tripura
| | - N. K. Mehta
- College of Fisheries, CAU (I), Lembucherra, Tripura
| | - Apurba Saha
- College of Fisheries, CAU (I), Lembucherra, Tripura
| | | |
Collapse
|