1
|
Khalid S, Zahid M, Chaudhary K, Naeem M, Mustafa M, Onyeaka H, Hafeez A, Amin S, Raana S. Unveiling the emerging trends of egg components-based biodegradable food packaging development: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13433. [PMID: 39217508 DOI: 10.1111/1541-4337.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.
Collapse
Affiliation(s)
- Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muqaddas Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muzammil Mustafa
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Azka Hafeez
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sara Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sumbal Raana
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Ngolong Ngea GL, Yang Q, Xu M, Ianiri G, Dhanasekaran S, Zhang X, Bi Y, Zhang H. Revisiting the current and emerging concepts of postharvest fresh fruit and vegetable pathology for next-generation antifungal technologies. Compr Rev Food Sci Food Saf 2024; 23:e13397. [PMID: 38924311 DOI: 10.1111/1541-4337.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Département de Transformation et Contrôle de qualité des Produits Halieutiques, Institut des Sciences Halieutiques, Université de Douala à Yabassi, Douala-Bassa, Cameroun
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Meiqiu Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | | | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Yiblet Y, Abdu I, Belew B. Comprehensive Literature Review on Metal Nanoparticle for Enhanced Shelf Life of Mango Fruit. ScientificWorldJournal 2024; 2024:4782328. [PMID: 38957455 PMCID: PMC11217571 DOI: 10.1155/2024/4782328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
The purpose of this review was to investigate the application of metal nanoparticles in fruit shelf life extension. Despite growing interest in nanoparticles and their potential applications, there are currently few effective methods for prolonging the shelf life of fruits. The study concentrated on the principles underlying the shelf life extension of metallic nanoparticles, including copper oxide, zinc oxide, silver, and titanium oxide. The biological properties of nanoparticles, especially those with antibacterial qualities, have drawn interest as possible fruit preservation solutions. Many conventional preservation methods have drawbacks, including expensive production costs, short shelf lives, undesirable residues, and the incapacity to properly keep perishable fruits in their natural environments. Techniques for extending shelf life based on nanotechnology have the potential to get around these problems. The review focused on the effective use of environmentally benign, green synthesis-produced nanoparticles to extend the fruit shelf life. The ability of these nanoparticles to successfully preserve fresh fruits was established. The results imply that fruit preservation by the use of nanoparticle synthesis techniques may be a viable strategy, offering a more effective and sustainable substitute for traditional procedures.
Collapse
Affiliation(s)
- Yalew Yiblet
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Indiris Abdu
- Department of BiologyMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| | - Basaznew Belew
- Department of MathematicsMekdela Amba University, P.O. Box 32, Tulu Awlia, Ethiopia
| |
Collapse
|
4
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Bogahawatta A, Manuda KRJ, Weerasekera M, Kottegoda N. Ilmenite-Grafted Graphene Oxide as an Antimicrobial Coating for Fruit Peels. ACS OMEGA 2024; 9:26568-26581. [PMID: 38911717 PMCID: PMC11191080 DOI: 10.1021/acsomega.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Postharvest loss is a significant global challenge that needs to be urgently addressed to sustain food systems. This study describes a simple microwave-assisted green synthesis method in developing a nanohybrid material combining natural ilmenite (FeTiO3) and graphene oxide (GO) as a promising antimicrobial fruit peel coating to reduce postharvest loss. The natural ilmenite was calcined in an inert environment and was mixed with GO in a microwave reactor to obtain the nanohybrid. The nanohybrid was then incorporated into an alginate biopolymer to form the fruit coating. Microscopic images revealed successful grafting of FeTiO3 nanoparticles onto the GO sheets. Spectroscopic measurements of Raman, X-ray photoemission, and infrared provided insights into the interactions between the two matrices. The optical band gap calculated from Tauc's relation using UV-vis data showed a significant reduction in the band gap of the hybrid compared to that of natural ilmenite. The antimicrobial activity was assessed using Escherichia coli, which showed a substantial decrease in colony counts. Bananas coated with the nanohybrid showed a doubling in the shelf life compared with uncoated fruits. Consistent with this, the electronic nose (E-nose) measurements and freshness indicator tests revealed less deterioration of the physicochemical properties of the coated bananas. Overall, the results show promising applications for the ilmenite-grafted GO nanohybrid as a food coating capable of minimizing food spoilage due to microbial activity.
Collapse
Affiliation(s)
- Piyumi Kodithuwakku
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Imalka Munaweera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
- Instrument
Center, Faculty of Applied Sciences, University
of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Randika Jayasinghe
- Department
of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Nugegoda 10100, Sri Lanka
| | - Tharanga Thoradeniya
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 003000, Sri Lanka
| | - Achala Bogahawatta
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Manjula Weerasekera
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Nilwala Kottegoda
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| |
Collapse
|
5
|
Lian L, Gu F, Du M, Lin Y, Chang H, Wang J. The combination of high oxygen and nanocomposite packaging alleviated quality deterioration by promoting antioxidant capacity and phenylpropane metabolism in Volvariella volvacea. Food Chem 2024; 439:138092. [PMID: 38039611 DOI: 10.1016/j.foodchem.2023.138092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Volvariella volvacea is a highly perishable mushroom that severely affects its postharvest commercial value. This study aimed to investigate the impact of high oxygen (O2) levels combined with nanocomposite packaging on the shelf-life quality of V. volvacea. Results showed that treatment with high concentrations of O2 (80% and 100% O2) and nanocomposite packaging effectively delayed the quality deterioration of V. volvacea, resulting in better postharvest appearance, higher firmness, lower weight loss, malondialdehyde (MDA) content, and leakage of membrane electrolytes. Further analysis revealed the combination treatments ameliorated oxidative stress by inducing antioxidant enzymes and the glutathione-ascorbate (GSH-AsA) cycle at both enzymatic and transcriptional levels, thereby activating the antioxidant system. Additionally, the treatments enhanced activities of key enzymes in phenylpropane metabolism, leading to a reduction in the decrease of total phenolics and flavonoids. This work provides new insights into the development of postharvest technologies to prolong the storage life of V. volvacea.
Collapse
Affiliation(s)
- Lingdan Lian
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fengju Gu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Minru Du
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yimei Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hao Chang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jie Wang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
6
|
Dai L, Wang X, Mao X, He L, Li C, Zhang J, Chen Y. Recent advances in starch-based coatings for the postharvest preservation of fruits and vegetables. Carbohydr Polym 2024; 328:121736. [PMID: 38220350 DOI: 10.1016/j.carbpol.2023.121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Efficient and low-cost postharvest preservation of fruits and vegetables has always been one of the urgent problems to be solved in the food field. Due to the wide sources, good environmental and human safety, and high biodegradability, starch-based coating preservation method has great application prospects in the postharvest preservation of fruits and vegetables. However, starch materials also have the disadvantages of poor mechanical properties and easy water absorption performance, which makes it difficult to fully meet the requirements in practical production. Therefore, starch is often used in combination with other components to form composite materials. This paper began with an introduction to the preservation principles of edible starch-based coatings, including inherent properties and extra functional properties. Besides, the preservation principles of edible coatings and the recent advances in the field of fruit and vegetable preservation were also comprehensively reviewed, focusing on the preparation and application of starch-based coatings. The information will contribute to the further development of starch-based coatings to improve the postharvest preservation effect of fruits and vegetables.
Collapse
Affiliation(s)
- Limin Dai
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuzhuang Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiayu Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linyu He
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Changwei Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Zhang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, Zhejiang, China
| | - Yuan Chen
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
7
|
Aaqil M, Peng C, Kamal A, Nawaz T, Gong J. Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit. Foods 2024; 13:267. [PMID: 38254568 PMCID: PMC10815105 DOI: 10.3390/foods13020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Peaches are among the most well-known fruits in the world due to their appealing taste and high nutritional value. Peach fruit, on the other hand, has a variety of postharvest quality issues like chilling injury symptoms, internal breakdown, weight loss, decay, shriveling, and over-ripeness, which makes a challenging environment for industries and researchers to develop sophisticated strategies for fruit quality preservation and extending shelf life. All over the world, consumers prefer excellent-quality, high-nutritional-value, and long-lasting fresh fruits that are free of chemicals. An eco-friendly solution to this issue is the coating and filming of fresh produce with natural edible materials. The edible coating utilization eliminates the adulteration risk, presents fruit hygienically, and improves aesthetics. Coatings are used in a way that combines food chemistry and preservation technology. This review, therefore, examines a variety of natural coatings (proteins, lipids, polysaccharides, and composite) and their effects on the quality aspects of fresh peach fruit, as well as their advantages and mode of action. From this useful information, the processors could benefit in choosing the suitable edible coating material for a variety of fresh peach fruits and their application on a commercial scale. In addition, prospects of the application of natural coatings on peach fruit and gaps observed in the literature are identified.
Collapse
Affiliation(s)
- Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Ayesha Kamal
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Taufiq Nawaz
- College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| |
Collapse
|
8
|
Wang Y, Zhang J, Wang D, Wang X, Zhang F, Chang D, You C, Zhang S, Wang X. Effects of cellulose nanofibrils treatment on antioxidant properties and aroma of fresh-cut apples. Food Chem 2023; 415:135797. [PMID: 36868069 DOI: 10.1016/j.foodchem.2023.135797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Horticultural products tend to deteriorate during postharvest storage and processing. In this study, cellulose nanofibers (CNFs) were prepared from wood to investigate the effects of CNF treatment on the storage quality, aroma composition, and antioxidant system of fresh-cut apple (Malus domestica) wedges. Compared with control treatment, CNF coating treatment significantly improved the appearance of apple wedges; reduced the decay rate of apple wedges; and delayed the decline in weight loss, firmness, and titratable acid during storage. Gas chromatography-mass spectrometry showed that CNF treatment could maintain the aroma components of apple wedges (stored for 4 days). Further investigations showed that CNF treatment increased the antioxidant system level and decreased reactive oxygen species content and membrane lipid peroxidation level of apple wedges. Overall, this study showed that CNF coating could effectively maintain the quality of fresh-cut apples during cold storage.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Daru Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, PR China; National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Dayong Chang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China; Yantai Goodly Biological Technology Co., Ltd., Yan'Tai 241003, Shandong, PR China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'An 271018, Shandong, PR China.
| |
Collapse
|
9
|
Huang J, Zhang M, Mujumdar AS, Ma Y. Technological innovations enhance postharvest fresh food resilience from a supply chain perspective. Crit Rev Food Sci Nutr 2023; 64:11044-11066. [PMID: 37409544 DOI: 10.1080/10408398.2023.2232464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Fresh food is rich in nutrients but is usually seasonal, perishable, and challenging to store without degradation of quality. The inherent limitations of various preservation technologies can result in losses in all stages of the supply chain. As consumers of fresh foods have become more health-conscious, new technologies for intelligent, energy-efficient, and nondestructive preservation and processing have emerged as a research priority in recent years. This review aims to summarize the quality change characteristics of postharvest fruits, vegetables, meats, and aquatic products. It critically analyzes research progress and applications of various emerging technologies, which include: the application of high-voltage electric field, magnetic field, electromagnetic field, plasma, electrolytic water, nanotechnology, modified atmosphere packaging, and composite bio-coated film preservation technologies. An evaluation is presented of the benefits and drawbacks of these technologies, as well as future development trends. Moreover, this review provides guidance for design of the food supply chain to take advantage of various technologies used to process food, reduce losses and waste of fresh food, and this improve the overall resilience of the supply chain.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
10
|
Godel-Jędrychowska K, Milewska-Hendel A, Sala K, Barański R, Kurczyńska E. The Impact of Gold Nanoparticles on Somatic Embryogenesis Using the Example of Arabidopsis thaliana. Int J Mol Sci 2023; 24:10356. [PMID: 37373504 DOI: 10.3390/ijms241210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Although the influence of nanoparticles (NPs) on developmental processes is better understood, little is known about their impact on somatic embryogenesis (SE). This process involves changes in the direction of cell differentiation. Thus, studying the effect of NPs on SE is essential to reveal their impact on cell fate. This study aimed to examine the influence of gold nanoparticles (Au NPs) with different surface charges on the SE of 35S:BBM Arabidopsis thaliana, with particular emphasis on the spatiotemporal localization of pectic arabinogalactan proteins (AGPs) and extensin epitopes in cells changing the direction of their differentiation. The results show that under the influence of nanoparticles, the explant cells of 35S:BBM Arabidopsis thaliana seedling origin did not enter the path of SE. Bulges and the formation of organ-like structures were observed in these explants, in contrast to the control, where somatic embryos developed. Additionally, spatiotemporal changes in the chemical composition of the cell walls during the culture were observed. Under the influence of Au NPs, the following effects were observed: (1) explant cells did not enter the SE pathway, (2) the impacts of Au NPs with different surface charges on the explants were variable, and (3) the compositions of the analyzed pectic AGPs and extensin epitopes were diverse in the cells with different developmental programs: SE (control) and non-SE (treated with Au NPs).
Collapse
Affiliation(s)
- Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Sala
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-130 Kraków, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
11
|
Wang Z, Chen Y, Zhang N, Zhang RX, He R, Ju X, Mamadalieva NZ. Plant protein nanogel–based patchy Janus particles with tunable anisotropy for perishable food preservation. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Affiliation(s)
- Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Yao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Nan Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Rui Xue Zhang
- Institute of Medical Research Northwestern Polytechnical University Xi'an Shaanxi China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Nilufar Z. Mamadalieva
- Laboratory of Chemistry of Glycosides Institute of the Chemistry of Plant Substances AS RUz Tashkent Uzbekistan
| |
Collapse
|
12
|
Bio-nanocomposites and their potential applications in physiochemical properties of cheese: an updated review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Electrospun biopolymer material for antimicrobial function of fresh fruit and vegetables: Application perspective and challenges. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Yang W, Wang P, Zhang W, Xu M, Yan L, Yan Z, Du W, Ouyang L, Liu B, Wu Z, Zhang Z, Zhao S, Li X, Wang L. Review on preservation techniques of edible lily bulbs in China. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2107708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Wenzhe Yang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Peng Wang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Wen Zhang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Mengda Xu
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Lihong Yan
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Ziyi Yan
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Wanhua Du
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Lu Ouyang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Bin Liu
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Zijian Wu
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Zhe Zhang
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Songsong Zhao
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Xingbo Li
- Tianjin key Laboratory of Refrigeration Technology, School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, P.R. China
| | - Lei Wang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, P.R. China
| |
Collapse
|
15
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Sohaib M, Iqbal T, Afsheen S, Almohammedi A, Khan H, Masood A, Yousaf M, Mansha MS, Farooq M, Naseer H, Riaz K, Sayed M, El-Rehim AA, Ali AM. Simple synthesis of lanthanum and molybdenum doped ZnO for their application to enhance the shelf life of apple. OPTICAL MATERIALS 2022; 134:113195. [DOI: 10.1016/j.optmat.2022.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Value-added utilization of fruit and vegetable processing by-products for the manufacture of biodegradable food packaging films. Food Chem 2022; 405:134964. [DOI: 10.1016/j.foodchem.2022.134964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
18
|
Shen D, Zhang M, Mujumdar AS, Li J. Advances and application of efficient physical fields in extrusion based 3D food printing technology. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
|
20
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Weerasekera M, Ajayan PM, Kottegoda N. A Review on Recent Developments in Structural Modification of TiO2 For Food Packaging Applications. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Bhat TA, Hussain SZ, Wani SM, Rather MA, Reshi M, Naseer B, Qadri T, Khalil A. The impact of different drying methods on antioxidant activity, polyphenols, vitamin C and rehydration characteristics of Kiwifruit. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Wang Y, Zhang J, Wang X, Zhang T, Zhang F, Zhang S, Li Y, Gao W, You C, Wang X, Yu K. Cellulose Nanofibers Extracted From Natural Wood Improve the Postharvest Appearance Quality of Apples. Front Nutr 2022; 9:881783. [PMID: 35634411 PMCID: PMC9136226 DOI: 10.3389/fnut.2022.881783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
To prolong the shelf life of perishable food with a simple and environmentally friendly postharvest preservation technology is one of the global concerns. This study aimed to explore the application value of biological macromolecule natural cellulose nanofibers (CNFs) in extending the postharvest fruit shelf life. In this study, 0.5% (wt%) CNFs were prepared from natural wood and coated on the surface of early-ripening apple fruits. After 10 days of storage at room temperature, the results revealed that the shelf life of apple fruits with CNF coating was significantly prolonged, and the fruit appearance quality improved. The invisible network structure of CNFs in the fruit epidermis was observed under an atomic force microscope (AFM). The gas chromatography and mass spectrometry (GC-MS) analysis showed that CNFs significantly promoted the formation of epidermal wax, especially fatty alcohols, during storage. In addition, the CNFs remarkably promoted the upregulation of genes related to the synthesis of cuticular wax of apple. In conclusion, this study provides an environmentally sustainable nanomaterial for post-harvest preservation of horticultural products, and also provides a new insight into the effect of CNFs on postharvest storage of apple fruits.
Collapse
Affiliation(s)
- Yongxu Wang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jing Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xinjie Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Fujun Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuai Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wensheng Gao
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- *Correspondence: Xiaofei Wang
| | - Kun Yu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, China
- Kun Yu
| |
Collapse
|
23
|
Adhikari M, Koirala S, Anal AK. Edible multilayer coating using electrostatic layer‐by‐layer deposition of chitosan and pectin enhances shelf life of fresh strawberries. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Manita Adhikari
- Food Engineering and Bioprocess Technology Academic Program Department of Food, Agriculture and Bioresources School of Environment, Resources, and Development Asian Institute of Technology P.O Box 4 Klong Luang, Pathum Thani 12120 Thailand
| | - Sushil Koirala
- Food Engineering and Bioprocess Technology Academic Program Department of Food, Agriculture and Bioresources School of Environment, Resources, and Development Asian Institute of Technology P.O Box 4 Klong Luang, Pathum Thani 12120 Thailand
- Food Innovation, Nutrition, and Health Academic Program Department of Food, Agriculture and Bioresources School of Environment, Resources, and Development Asian Institute of Technology P.O Box 4 Klong Luang, Pathum Thani 12120 Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology Academic Program Department of Food, Agriculture and Bioresources School of Environment, Resources, and Development Asian Institute of Technology P.O Box 4 Klong Luang, Pathum Thani 12120 Thailand
- Food Innovation, Nutrition, and Health Academic Program Department of Food, Agriculture and Bioresources School of Environment, Resources, and Development Asian Institute of Technology P.O Box 4 Klong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
24
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
25
|
Abbas Z, Nemiwal M, Dhillon A, Kumar D. Use of biogenic NiONPs as nanocatalyst in Kumada-Corriu coupling reaction. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zahir Abbas
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Ankita Dhillon
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Dinesh Kumar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
26
|
Liu W, Zhang M, Mujumdar AS, Chen J. Role of dehydration technologies in processing for advanced ready-to-eat foods: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:5506-5520. [PMID: 34961367 DOI: 10.1080/10408398.2021.2021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Advanced ready-to-eat foods, which can be consumed directly or only need simple processed before consumption, refer to the products that processing with cutting-edge food science and technology and have better quality attribute. Cold chain and chemical addition are commonly used options to ensure microbial safety of high moisture advanced ready-to-eat foods. However, this requires freezing/thawing processing at high cost or has undesirable residue. Dehydration treatment has the potential to compensate those shortcomings. This article reviewed the positive effects of dehydration on advanced ready-to-eat foods, current application status of dehydration technologies, novel dehydration related technologies and the pathogenic bacteria control of products. It is observed that dehydration treatment is receiving increasing attention for ready-to-eat foods including space foods, 3 D-printed personalized foods and formula foods for special medical purposes. Recently developed drying technologies such as pulsed spouted microwave freeze-drying and infrared freeze-drying have attracted much interest due to their excellent drying characteristics. Finally, intelligent drying, dehydration-nano-hybridization and dehydration-induced multi-dimensional modification technology are some of the emerging R and D areas in this field.
Collapse
Affiliation(s)
- Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
27
|
Wang D, Li W, Zhang X, Liang S, Lin Y. Green Process: Improved Semi-Continuous Fermentation of Pichia pastoris Based on the Principle of Vitality Cell Separation. Front Bioeng Biotechnol 2021; 9:777774. [PMID: 34917600 PMCID: PMC8669635 DOI: 10.3389/fbioe.2021.777774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The large-scale fermentation of Pichia pastoris for recombinant protein production would be time consuming and produce a large amount of waste yeast. Here we introduce a novel semi-continuous fermentation process for P. pastoris GS115 that can separate vitality cells from broth and recycle the cells to produce high-secretory recombinant pectate lyase. It is based on differences in cell sedimentation coefficients with the formation of salt bridges between metal ions and various cell states. Compared to batch-fed cultivation and general semi-continuous culture, the novel process has significant advantages, such as consuming fewer resources, taking less time, and producing less waste yeast. Sedimentation with the addition of Fe3+ metal ions consumed 14.8 ± 0.0% glycerol, 97.8 ± 1.3% methanol, 55.0 ± 0.9 inorganic salts, 81.5 ± 0.0% time cost, and 77.0 ± 0.1% waste yeast versus batch-fed cultivation to produce an equal amount of protein; in addition, the cost of solid-liquid separation was lower for cells in the collected fermentation broth. The process is economically and environmentally efficient for producing recombinant proteins.
Collapse
Affiliation(s)
- Denggang Wang
- South China University of Technology, Guangzhou, China
| | - Wenjie Li
- South China University of Technology, Guangzhou, China
| | - Xinying Zhang
- South China University of Technology, Guangzhou, China
| | - Shuli Liang
- South China University of Technology, Guangzhou, China
| | - Ying Lin
- South China University of Technology, Guangzhou, China
| |
Collapse
|
28
|
Roobab U, Abida A, Afzal R, Madni GM, Zeng X, Rahaman A, Aadil RM. Impact of high‐pressure treatments on enzyme activity of fruit‐based beverages: an overview. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Afeera Abida
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Rehan Afzal
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Abdul Rahaman
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
29
|
Gonçalves DDC, Ribeiro WR, Gonçalves DC, Menini L, Costa H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res Int 2021; 150:110758. [PMID: 34865776 DOI: 10.1016/j.foodres.2021.110758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
The world population growth has raised concerns about food security. Agricultural systems are asked to satisfy a growing demand for food with increasingly limited resources, and simultaneously still must reduce the impacts on the environment. This scenario encourages the search for safe and sustainable production strategies. Reducing losses in the production process can be one of the main ways to guarantee food safety. In fruticulture, it is estimated that more than 50% of the production can be lost between harvest and the final consumer due to postharvest diseases caused by phytopathogenic fungi. The fungi of the genus Colletotrichum are opportunistic and are associated with several diseases, being the anthracnose the most relevant in terms of the quality and yield losses in fruit species around worldwide. To control these diseases, the use of synthetic fungicides has been the main instrument utilized, however, because of their phytotoxicity to human health, the environment, and strong selection pressure imposed by continuous applications, the fungicides have caused resistance in the pathogen populations. So reducing the excessive application of these products is indispensable for human health and for sustainable Agriculture. Towards this purpose, research has been carried out to identify the phytopathological potentiality of essential oils (EOs) extracted from plants. Therefore, this review aims to contribute to the formation of knowledge bases, about the discoveries, recent advances, and the use of EOs as a strategy to alternatively control fungal disease caused by Colletotrichum spp. in postharvest fruits. Here, we provide valuable information exploring the application potential of essential oils as commercially useful biorational pesticides for food preservation, contributing to sustainable production and global food security.
Collapse
Affiliation(s)
- Dalila da Costa Gonçalves
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Wilian Rodrigues Ribeiro
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Débora Cristina Gonçalves
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Luciano Menini
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Hélcio Costa
- Fazenda do Estado - Incaper. BR 262, km 94 - Domingos, Martins - ES 29278-000, Brazil.
| |
Collapse
|
30
|
Zhang K, Wang W, Zhao K, Ma Y, Wang Y, Li Y. Recent development in foodborne nanocellulose: Preparation, properties, and applications in food industry. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Innovative hybrid strategy for efficient production of high-quality freeze-dried instant noodles: Combination of laser with leavening agent. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Liu W, Zhang M, Mujumdar AS, Chitrakar B, Yu D. Effects of chitosan coating on freeze-drying of blueberry enhanced by ultrasound pre-treatment in sodium bicarbonate medium. Int J Biol Macromol 2021; 181:631-643. [PMID: 33798582 DOI: 10.1016/j.ijbiomac.2021.03.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
Sodium bicarbonate medium ultrasound pre-treatment can enhance the freeze-drying process of blueberries, but the quality of dried products cannot meet the actual production needs. To yield higher quality products, chitosan coating was applied in blueberry sodium bicarbonate medium ultrasound pre-treatment enhanced freeze-drying process. The improvement effect of different chitosan coating methodologies on the procedure of blueberry freeze-drying, enhanced by ultrasound pre-treatment in sodium bicarbonate medium, was investigated. These include: chitosan solution soaking alone (CH-A), chitosan medium ultrasound treatment (US-CH), first sodium bicarbonate medium ultrasound treatment then chitosan solution soaking (US-NaHCO3 + CH) and first sodium bicarbonate soaking followed by chitosan medium ultrasound treatment (NaHCO3 + US-CH). While the treatments that presoaking in sodium bicarbonate solution (NaHCO3-A), water medium ultrasound treatment (US-W) and sodium bicarbonate medium ultrasound treatment (US-NaHCO3) were used as the control groups. Results demonstrated that ultrasound treatment and sodium bicarbonate soaking have positive effect on improving the freeze-drying characteristics of blueberries, while chitosan coating has a negative effect. Chitosan coating has a significant effect on strengthening limit effect of blueberry skin on juice overflow and weakening moisture absorption capacity of dried blueberry. US-NaHCO3 + CH pretreatment yielded the best results for blueberry freeze-drying.
Collapse
Affiliation(s)
- Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Bimal Chitrakar
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd., 266700 Qingdao, Shandong, China
| |
Collapse
|
33
|
Tavassoli-Kafrani E, Gamage MV, Dumée LF, Kong L, Zhao S. Edible films and coatings for shelf life extension of mango: a review. Crit Rev Food Sci Nutr 2020; 62:2432-2459. [PMID: 33280405 DOI: 10.1080/10408398.2020.1853038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Edible films and coatings are eco-friendly promising materials for preserving the quality and extending the shelf life of fresh and minimally-processed fruits. They can form protective layers around fruits, regulate their respiration rates, and protect them from loss of water, tissue softening, browning, and microbial contamination. Edible films and coatings have many advantages over other post-harvest treatments. They can add commercial value to fruits by enhancing their appearance, and act as carriers of functional ingredients, such as antioxidants, antimicrobial agents and nutraceuticals. Mango, a highly perishable tropical fruit, has a short post-harvest life, which limits transport to distant markets. Application of edible films and coatings on mango fruits is an effective method to preserve their quality and safety. This paper provides an overview of desirable properties for films and coatings, and recent development in different edible coatings for both fresh and minimally-processed mango. The most popular edible coating materials, such as chitosan, waxes, starch, gums, and cellulose used for mango are reviewed. The commercialization of coating formulations and equipment used for application of coatings are discussed. The environmental impacts, safety aspects, and the challenges encountered are outlined. The opportunities to use other coating materials, such as aloe-vera gel, microbial polysaccharides, and photosynthetic microorganisms are also examined.
Collapse
Affiliation(s)
- Elham Tavassoli-Kafrani
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | | | - Ludovic F Dumée
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | - Lingxue Kong
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | - Shuaifei Zhao
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Aguilar‐Veloz LM, Calderón‐Santoyo M, Vázquez González Y, Ragazzo‐Sánchez JA. Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Sci Nutr 2020; 8:2555-2568. [PMID: 32566173 PMCID: PMC7300048 DOI: 10.1002/fsn3.1437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 11/07/2022] Open
Abstract
The use of natural antimicrobial agents is an attractive ecological alternative to the synthetic fungicides applied to control pathogens during postharvest. In order to improve industrial production systems, postharvest research has evolved toward integration with science and technology aspects. Thus, the present review aims to draw attention to the achieved advances and challenges must be overcome, to promote application of essential oils and polyphenols as antimicrobial agents, against phytopathogens and foodborne microorganisms during postharvest. Besides that, it attempts to highlight the use of coating and encapsulation techniques as emerging methods that improve their effectiveness. The integral knowledge about the vegetable systems, molecular mechanisms of pathogens and mechanisms of these substances would ensure more efficient in vitro and in vivo experiences. Finally, the cost-benefit, toxicity, and ecotoxicity evaluation will be guaranteed the successful implementation and commercialization of these technologies, as a sustainable alternative to minimize production losses of vegetable commodities.
Collapse
Affiliation(s)
- Laura Maryoris Aguilar‐Veloz
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Montserrat Calderón‐Santoyo
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Yuliana Vázquez González
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Juan Arturo Ragazzo‐Sánchez
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| |
Collapse
|
35
|
Ijaz M, Zafar M, Afsheen S, Iqbal T. A Review on Ag-Nanostructures for Enhancement in Shelf Time of Fruits. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01504-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|