1
|
Brusa V, Costa M, Oteiza JM, Galli L, Barril PA, Leotta GA, Signorini M. Prioritization of vegetable-borne biological hazards in Argentina using a multicriteria decision analysis tool. FOOD SCI TECHNOL INT 2024; 30:680-696. [PMID: 37306110 DOI: 10.1177/10820132231180640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vegetables, especially those eaten raw, have been implicated in several foodborne disease outbreaks. Since multiple vegetable matrices and hazards are involved, risk managers have to prioritize those with the greatest impact on public health to design control strategies. In this study, a scientific-based risk ranking of foodborne pathogens transmitted by leafy green vegetables in Argentina was performed. The prioritization process included hazard identification, evaluation criteria identification and definition, criteria weighting, expert survey design and selection and call for experts, hazard score calculation, hazard ranking and variation coefficient, and result analysis. Regression tree analysis determined four risk clusters: high (Cryptosporidum spp., Toxoplasma gondii, Norovirus), moderate (Giardia spp., Listeria spp., Shigella sonnei), low (Shiga toxin-producing Escherichia coli, Ascaris spp., Entamoeba histolytica, Salmonella spp., Rotavirus, Enterovirus) and very low (Campylobacter jejuni, hepatitis A virus and Yersinia pseudotuberculosis). Diseases caused by Norovirus, Cryptosporidium spp. and T. gondii do not require mandatory notification. Neither viruses nor parasites are included as microbiological criteria for foodstuff. The lack of outbreak studies did not allow to accurately identify vegetables as a source of Norovirus disease. Information on listeriosis cases or outbreaks due to vegetable consumption was not available. Shigella spp. was the main responsible for bacterial diarrhea, but it has not been epidemiologically associated with vegetable consumption. The quality of the available information for all hazards studied was very low and low. The implementation of good practice guidelines throughout the entire vegetable production chain could prevent the presence of the identified hazards. The current study allowed the identification of vacancy areas and could help reinforce the need for performing epidemiological studies on foodborne diseases potentially associated with vegetable consumption in Argentina.
Collapse
Affiliation(s)
- Victoria Brusa
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Magdalena Costa
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Juan M Oteiza
- Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del desierto 1310, Neuquén, Argentina
| | - Lucía Galli
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Patricia A Barril
- Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del desierto 1310, Neuquén, Argentina
| | - Gerardo A Leotta
- Facultad de Ciencias Veterinarias UNLP, IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP - CONICET LA PLATA), La Plata, Argentina
| | - Marcelo Signorini
- IDICAL - Instituto de Investigación de la Cadena Láctea (CONICET SANTA FE - INTA), Rafaela, Santa Fe, Argentina
| |
Collapse
|
2
|
More SJ, Benford D, Hougaard Bennekou S, Bampidis V, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Naska A, Poulsen M, Ranta J, Sand S, Wallace H, Bastaki M, Liem D, Smith A, Ververis E, Zamariola G, Younes M. Guidance on risk-benefit assessment of foods. EFSA J 2024; 22:e8875. [PMID: 39015302 PMCID: PMC11250173 DOI: 10.2903/j.efsa.2024.8875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The EFSA Scientific Committee has updated its 2010 Guidance on risk-benefit assessment (RBA) of foods. The update addresses methodological developments and regulatory needs. While it retains the stepwise RBA approach, it provides additional methods for complex assessments, such as multiple chemical hazards and all relevant health effects impacting different population subgroups. The updated guidance includes approaches for systematic identification, prioritisation and selection of hazardous and beneficial food components. It also offers updates relevant to characterising adverse and beneficial effects, such as measures of effect size and dose-response modelling. The guidance expands options for characterising risks and benefits, incorporating variability, uncertainty, severity categorisation and ranking of different (beneficial or adverse) effects. The impact of different types of health effects is assessed qualitatively or quantitatively, depending on the problem formulation, scope of the RBA question and data availability. The integration of risks and benefits often involves value-based judgements and should ideally be performed with the risk-benefit manager. Metrics such as Disability-Adjusted Life Years (DALYs) and Quality-Adjusted Life Years (QALYs) can be used. Additional approaches are presented, such as probability of all relevant effects and/or effects of given severities and their integration using severity weight functions. The update includes practical guidance on reporting results, interpreting outcomes and communicating the outcome of an RBA, considering consumer perspectives and responses to advice.
Collapse
|
3
|
Mousavi Khaneghah A, Kamalabadi M, Heshmati A, Hadian Z. The concentration of potentially toxic elements (PTEs) in Iranian rice: a dietary health risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90757-90771. [PMID: 37462870 DOI: 10.1007/s11356-023-28442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/21/2023] [Indexed: 08/24/2023]
Abstract
In the present study, six potentially toxic elements (PTEs), including chromium (Cr), arsenic (As), cadmium (Cd), lead (Pb), copper (Cu), and nickel (Ni), were determined in 41 domestic rice samples collected from Tehran using ICP-OES (inductively coupled plasma-optical emission spectrometry). The mean concentration of Cd, As, Cu, Pb, Cr, and Ni was found as 0.014 ± 0.01, 0.018 ± 0.005, 2.15 ± 1.84, 0.42 ± 0.31, 0.1 ± 0.16, and 0.48 ± 0.36 mg kg-1, respectively. Possible risks due to ingestion of PTEs via rice consumption for children and adults were assessed by Monte Carlo simulation. The 50th percentile of estimated Cr intake for children through domestic rice consumption exceeded the maximum tolerable daily intake. There was only a potential non-carcinogenic risk for single Cr exposure for children. The 95th percentile of the estimated hazard index (HI) for children and adults was 4.34 and 1.05, indicating a potential non-carcinogenic risk related to multiple PTE exposure. The lifetime cancer risk (ILCR) values derived from Cr, Ni, As, and Cd exposure exceeded the threshold value, indicating a carcinogenic risk due to PTEs' exposure. The deterministic assessment demonstrates that the Tehran population may be at risk through domestic rice consumption. This study indicates that risk related to the exposure to multiple PTEs through the consumption of rice in adults and children in Tehran is recognized as an important issue, thus supporting the importance of cumulative analysis of the risk of exposure to PTEs through food. Finally, national strategic environmental assessment and technological solutions for monitoring and protecting freshwater, soil, waste management, and chemicals as a global concern policy are needed for public health.
Collapse
Affiliation(s)
- Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Hadian
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Baba FV, Esfandiari Z. Theoretical and practical aspects of risk communication in food safety: A review study. Heliyon 2023; 9:e18141. [PMID: 37539121 PMCID: PMC10395359 DOI: 10.1016/j.heliyon.2023.e18141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Currently, food safety hazards have introduced as one of the most important threats to public health worldwide. Considering numerous crises in the field of food safety at global, regional, and national levels, and their impact on the physical and mental health of consumers, it is very vital to evaluate risk communication strategies in each country. Food safety risk communication (FSRC) aims to provide the means for individuals to protect their health from food safety risks and make informed decisions about food risks. The purpose of this study is to present FSRC as one of the key parts of risk analysis, its importance considering the prevalence of food contamination and recent crises related to food. Additionally, the stages of implementation of FSRC are mentioned. In FSRC, it is essential to comply with the principles and prerequisites. There are various strategies for FSRC nowadays. Different platforms for FSRC are rapidly evolving. Choosing and evaluating the appropriate strategy according to the target group, consensus of stakeholders, cooperation and coordination of risk assessors and risk managers have a significant impact in order to improve and implement FSRC.
Collapse
Affiliation(s)
| | - Zahra Esfandiari
- Corresponding author. Hezar Jarib St, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Focker M, van Asselt E, van der Fels-Klerx H. Designing a risk-based monitoring plan for pathogens in food: A review. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Chelliah R, Banan-MwineDaliri E, Khan I, Wei S, Elahi F, Yeon SJ, Selvakumar V, Ofosu FK, Rubab M, Ju HH, Rallabandi HR, Madar IH, Sultan G, Oh DH. A review on the application of bioinformatics tools in food microbiome studies. Brief Bioinform 2022; 23:6533500. [PMID: 35189636 DOI: 10.1093/bib/bbac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
There is currently a transformed interest toward understanding the impact of fermentation on functional food development due to growing consumer interest on modified health benefits of sustainable foods. In this review, we attempt to summarize recent findings regarding the impact of Next-generation sequencing and other bioinformatics methods in the food microbiome and use prediction software to understand the critical role of microbes in producing fermented foods. Traditionally, fermentation methods and starter culture development were considered conventional methods needing optimization to eliminate errors in technique and were influenced by technical knowledge of fermentation. Recent advances in high-output omics innovations permit the implementation of additional logical tactics for developing fermentation methods. Further, the review describes the multiple functions of the predictions based on docking studies and the correlation of genomic and metabolomic analysis to develop trends to understand the potential food microbiome interactions and associated products to become a part of a healthy diet.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Eric Banan-MwineDaliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Imran Khan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.,Department of Biotechnology, University of Malakand, Khyber Pakhtunkhwa Pakistan
| | - Shuai Wei
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Vijayalakshmi Selvakumar
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Hum Hun Ju
- Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Harikrishna Reddy Rallabandi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Inamul Hasan Madar
- Department of Biochemistry, School of Life Science, Bharathidasan, University, Thiruchirappalli, Tamilnadu, India
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| |
Collapse
|
7
|
Ranta J, Mikkelä A, Suomi J, Tuominen P. BIKE: Dietary Exposure Model for Foodborne Microbiological and Chemical Hazards. Foods 2021; 10:2520. [PMID: 34828801 PMCID: PMC8621415 DOI: 10.3390/foods10112520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022] Open
Abstract
BIKE is a Bayesian dietary exposure assessment model for microbiological and chemical hazards. A graphical user interface was developed for running the model and inspecting the results. It is based on connected Bayesian hierarchical models, utilizing OpenBUGS and R in tandem. According to occurrence and consumption data given as inputs, a specific BUGS code is automatically written for running the Bayesian model in the background. The user interface is based on shiny app. Chronic and acute exposures are estimated for chemical and microbiological hazards, respectively. Uncertainty and variability in exposures are visualized, and a few optional model structures can be used. Simulated synthetic data are provided with BIKE for an example, resembling real occurrence and consumption data. BIKE is open source and available from github.
Collapse
Affiliation(s)
- Jukka Ranta
- Risk Assessment Unit, Finnish Food Authority, 00790 Helsinki, Finland; (A.M.); (J.S.); (P.T.)
| | | | | | | |
Collapse
|