1
|
Qin D, Liang X, Jiao L, Wang R, Zhao Y, Xue W, Wang J, Liang G. Sequence-Activity Relationship of Angiotensin-Converting Enzyme Inhibitory Peptides Derived from Food Proteins, Based on a New Deep Learning Model. Foods 2024; 13:3550. [PMID: 39593966 PMCID: PMC11592644 DOI: 10.3390/foods13223550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Food-derived peptides are usually safe natural drug candidates that can potentially inhibit the angiotensin-converting enzyme (ACE). The wet experiments used to identify ACE inhibitory peptides (ACEiPs) are time-consuming and costly, making it important and urgent to reduce the scope of experimental validation through bioinformatics methods. Here, we construct an ACE inhibitory peptide predictor (ACEiPP) using optimized amino acid descriptors (AADs) and long- and short-term memory neural networks. Our results show that combined-AAD models exhibit more efficient feature transformation ability than single-AAD models, especially the training model with the optimal descriptors as the feature inputs, which exhibits the highest predictive ability in the independent test (Acc = 0.9479 and AUC = 0.9876), with a significant performance improvement compared to the existing three predictors. The model can effectively characterize the structure-activity relationship of ACEiPs. By combining the model with database mining, we used ACEiPP to screen four ACEiPs with multiple reported functions. We also used ACEiPP to predict peptides from 21,249 food-derived proteins in the Database of Food-derived Bioactive Peptides (DFBP) and construct a library of potential ACEiPs to facilitate the discovery of new anti-ACE peptides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (D.Q.); (X.L.); (L.J.); (R.W.); (Y.Z.); (W.X.); (J.W.)
| |
Collapse
|
2
|
Du C, Gong H, Zhao H, Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem 2024; 453:139587. [PMID: 38781909 DOI: 10.1016/j.foodchem.2024.139587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Bioactive peptides (BAPs) represent a unique class of peptides known for their extensive physiological functions and their role in enhancing human health. In recent decades, owing to their notable biological attributes such as antioxidant, antihypertensive, antidiabetic, and anti-inflammatory activities, BAPs have received considerable attention. Simulated gastrointestinal digestion (SGD) is a technique designed to mimic physiological conditions by adjusting factors such as digestive enzymes and their concentrations, pH levels, digestion duration, and salt content. Initially established for analyzing the gastrointestinal processing of foods or their constituents, SGD has recently become a preferred method for generating BAPs. The BAPs produced via SGD often exhibit superior biological activity and stability compared with those of BAPs prepared via other methods. This review offers a comprehensive examination of the recent advancements in BAP production from foods via SGD, addressing the challenges of the method and outlining prospective directions for further investigation.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Huawei Zhao
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai Shandong Province 264025, PR China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
3
|
Yu T, Hu T, Na K, Zhang L, Lu S, Guo X. Glutamine-derived peptides: Current progress and future directions. Compr Rev Food Sci Food Saf 2024; 23:e13386. [PMID: 38847753 DOI: 10.1111/1541-4337.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.
Collapse
Affiliation(s)
- Tianfei Yu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Tianshuo Hu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Shuang Lu
- College of Life Science, South-Central Minzu University, Wuhan City, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Wuhan City, China
| |
Collapse
|
4
|
Hong L, Fan L, Wu J, Yang J, Hou D, Yao Y, Zhou S. Pulse Proteins and Their Hydrolysates: A Comprehensive Review of Their Beneficial Effects on Metabolic Syndrome and the Gut Microbiome. Nutrients 2024; 16:1845. [PMID: 38931200 PMCID: PMC11206746 DOI: 10.3390/nu16121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Pulses, as an important part of the human diet, can act as a source of high-quality plant proteins. Pulse proteins and their hydrolysates have shown promising results in alleviating metabolic syndrome and modulating the gut microbiome. Their bioactivities have become a focus of research, with many new findings added in recent studies. This paper comprehensively reviews the anti-hypertension, anti-hyperglycemia, anti-dyslipidemia and anti-obesity bioactivities of pulse proteins and their hydrolysates in recent in vitro and in vivo studies, which show great potential for the prevention and treatment of metabolic syndrome. In addition, pulse proteins and their hydrolysates can regulate the gut microbiome, which in turn can have a positive impact on the treatment of metabolic syndrome. Furthermore, the beneficial effects of some pulse proteins and their hydrolysates on metabolic syndrome have been supported by clinical studies. This review might provide a reference for the application of pulse proteins and their hydrolysates in functional foods or nutritional supplements for people with metabolic syndrome.
Collapse
Affiliation(s)
- Lingyu Hong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Linlin Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Junchao Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Jiaqi Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Yang Yao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (L.H.); (L.F.); (J.W.); (J.Y.); (D.H.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| |
Collapse
|
5
|
Karabulut G, Nemzer BV, Feng H. γ-Aminobutyric Acid (GABA)-enriched Hemp Milk by Solid-state Co-fermentation and Germination Bioprocesses. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:322-329. [PMID: 38753215 PMCID: PMC11178579 DOI: 10.1007/s11130-024-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
This study introduces the concept of developing a functional hemp drink enriched with γ-Aminobutyric acid (GABA) to enhance its nutritional value and functional properties utilizing Solid-State (SSF) co-Fermentation by Lactobacillus casei and Bacillus subtilis and germination bioprocesses. Bioprocesses may offer an alternative solution to challenges in hemp milk, such as product instability and the use of additives. Notably, the hemp milk produced through the germination for three days or co-fermentation processes yielded the highest GABA content of 79.84 and 102.45 mg/100 mL, respectively, compared to the untreated milk. These bioactive milk samples exhibited higher zeta potential and soluble protein content and also reduced solid particle sedimentation and droplet sizes (D4,3 and D3,2) compared to the untreated milk. Furthermore, the peptide, total phenolic content, and antioxidant activity of the produced GABA-enriched kinds of milk surpassed those of the untreated milk. Overall, the SSF and germination processes present a promising alternative for producing stable milk analogs with enhanced health-boosting properties.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Sakarya University, Sakarya, 54187, Turkey
| | | | - Hao Feng
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC, 27411, USA.
| |
Collapse
|
6
|
David LS, Nalle CL, Abdollahi MR, Ravindran V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals (Basel) 2024; 14:619. [PMID: 38396587 PMCID: PMC10886283 DOI: 10.3390/ani14040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Grain legumes are fair sources of protein, amino acids and energy, and can be used as a replacement for soybean meal in poultry feed formulations as the soybean meal becomes short in supply and costly. However, a concern associated with the use of grain legumes in poultry feeding is the presence of antinutritional factors. The effective processing and utilisation of these grain legumes in poultry feeding are well documented. The current review focuses on four selected grain legumes (lupins [Lupinus albus and Lupinus angustifolius], field peas [Phaseolus vulgaris], faba beans [Vicia faba] and chickpeas [Cicer arietinum]) and their nutrient content, the presence of antinutritional factors, processing methods and feeding value, including updated data based on recent research findings.
Collapse
Affiliation(s)
- Laura S. David
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
| | - Catootjie L. Nalle
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
- Animal Husbandry Department, Polytechnic of Agriculture Kupang, Prof. Herman Yohannes St., Lasiana, Kupang 85228, NTT, Indonesia
| | - M. Reza Abdollahi
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
- A2Z Poultry Feed DynamikZ, 69100 Villeurbanne, France
| | - Velmurugu Ravindran
- Monogastric Research Centre, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; (L.S.D.); (C.L.N.); (M.R.A.)
| |
Collapse
|
7
|
Maleki S, Razavi SH, Yadav H, Letizia Manca M. New horizon to the world of gut microbiome: seeds germination. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38227048 DOI: 10.1080/10408398.2023.2300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The second brain of humans has been known as the microbiome. The microbiome is a dynamic network composed of commensal bacteria, archaea, viruses, and fungi colonized in the human gastrointestinal tract. They play a vital role in human health by metabolizing components, maturation of the immune system, and taking part in the treatment of various diseases. Two important factors that can affect the gut microbiome's composition and/or function are the food matrix and methods of food processing. Based on scientific research, the consumption of whole grains can make positive changes in the gut microbiota. Seeds contain different microbiota-accessible substrates that can resist digestion in the upper gastrointestinal tract. Seed germination is one of the simplest and newest food processing approaches to improve seeds' bioavailability and overall nutritional value. During germination, the dormant hydrolytic seed's enzymes have been activated and then metabolize the macromolecules. The quality and quantity of bioactive compounds like prebiotics, fiber, phenolic compounds (PC), total free amino acids, and γ-aminobutyric acid (GABA) can increase even up to 4-10 folds in some cases. These components stimulate the survival and growth of healthful bacteria like probiotics and boost their activity. This effect depends on several parameters, e.g., germination environmental conditions. This review aims to provide up-to-date and latest research about promoting bioactive components during seed germination and investigating their impacts on gut microbiota to understand the possible direct and indirect effects of seed germination on the microbiome and human health.
Collapse
Affiliation(s)
- Sima Maleki
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering, University of Tehran, Karaj, Iran
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, and Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Salvador-Reyes R, Furlan LC, Martínez-Villaluenga C, Dala-Paula BM, Clerici MTPS. From ancient crop to modern superfood: Exploring the history, diversity, characteristics, technological applications, and culinary uses of Peruvian fava beans. Food Res Int 2023; 173:113394. [PMID: 37803732 DOI: 10.1016/j.foodres.2023.113394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 10/08/2023]
Abstract
The search for plant-based superfoods has shown that many regional populations already have these foods in their diet, with significant potential for production and marketing. This critical review intends to show the history, diversity, characteristics, and uses, emphasizing their significance in traditional diets and potential in the food industry of Peruvian fava beans. As a valuable plant-based protein source, fava beans offer essential micronutrients and have diverse culinary applications. Innovative food industry applications include plant-based meat alternatives, fortified gluten-free products, and a natural color, protein, and fiber source in extruded foods. Key studies have highlighted the successful incorporation of fava beans into various food products, improving their nutritional properties, though some studies also point to limitations in their sensory acceptance. Further research is needed to understand the bioactive components, health effects, and techno-functional characteristics of beans. Challenges facing cultivating and consuming fava beans in Peru include adapting to climate change, enhancing productivity and quality, and promoting consumption and added value. Addressing these challenges involves developing climate-resilient varieties, optimizing agricultural practices, and providing access to resources and financing. In conclusion, this review highlights the promising prospects of Peruvian fava beans as a sustainable, nutritionally rich, and versatile ingredient in the food industry. By harnessing their potential and overcoming challenges, Peruvian fava beans can transition from an ancient crop to a modern superfood, inspiring a global shift towards sustainable and nutritionally balanced diets, aiding the fight against malnutrition, and enriching culinary traditions worldwide.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil; Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru.
| | | | - Cristina Martínez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Department of Technological Processes and Biotechnology, Jose Antonio Novais, 6, 28040 Madrid, Spain
| | - Bruno Martins Dala-Paula
- Laboratório de Nutrição Experimental, Faculdade de Nutrição, Universidade Federal de Alfenas, Alfenas, MG 37130-000, Brazil
| | | |
Collapse
|
9
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules 2023; 28:5431. [PMID: 37513301 PMCID: PMC10383711 DOI: 10.3390/molecules28145431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The food industry, academia, food technologists, and consumers have become more interested in using faba bean seeds in the formulation of new products because of their nutritional content, accessibility, low costs, environmental advantages, and beneficial impacts on health. In this review, a systematic and up-to-date report on faba bean seeds' antinutrients and bioactive and processing techniques is comprehensively presented. The chemical composition, including the oil composition and carbohydrate constituents, is discussed. Factors influencing the reduction of antinutrients and improvement of bioactive compounds, including processing techniques, are discussed. Thermal treatments (cooking, autoclaving, extrusion, microwaving, high-pressure processing, irradiation) and non-thermal treatments (soaking, germination, extraction, fermentation, and enzymatic treatment) are identified as methods to reduce the levels of antinutrients in faba bean seeds. Appropriate processing methods can reduce the antinutritional factors and enrich the bioactive components, which is useful for the seeds' efficient utilization in developing functional foods. As a result, this evaluation focuses on the technologies that are employed to reduce the amounts of toxins in faba bean seeds. Additionally, a comparison of these methods is performed in terms of their advantages, disadvantages, viability, pharmacological activity, and potential for improvement using emerging technologies. Future research is expected in this area to fill the knowledge gap in exploiting the nutritional and health benefits of faba bean seeds and increase the utilization of faba bean seeds for different applications.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
10
|
Arouna N, Gabriele M, Tomassi E, Pucci L. Traditional Fermentation Affects the Nutraceutical Properties of Parkia biglobosa Seeds. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01064-8. [PMID: 37378802 DOI: 10.1007/s11130-023-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 06/29/2023]
Abstract
Parkia biglobosa seeds (African locust bean) play a crucial role in the diet and health of Western African populations. The seeds are spontaneously fermented to produce condiments used for food seasoning and stews preparation. Hence, to understand the health benefits of seed-based products from P. biglobosa, total polyphenol content, in vitro and ex vivo antioxidant properties, as well as antihypertensive activity, of fermented and non-fermented seeds were investigated. The Folin-Ciocalteu method was used to determine total polyphenol content; 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests were used to estimate the in vitro antioxidant activity. The ex vivo antioxidant and antihypertensive activities were evaluated by using cellular antioxidant activity in human red blood cells (CAA-RBC) and angiotensin-converting enzyme (ACE) inhibitory activity assays, respectively. The fermented seeds showed a huge increase in polyphenol content and in vitro antioxidant activities compared to non-fermented ones. The fermented seeds showed a higher potency of biological antioxidant activity than non-fermented ones by exhibiting greater protection of erythrocytes from oxidative damage at a very low dose of extracts. Both fermented and non-fermented seeds have been shown to contain peptides with ACE-inhibitory activity; however, the non-fermented seeds exerted a higher ACE-inhibitory activity than fermented ones. In conclusion, traditional fermentation positively impacted the nutraceutical and health benefits of P. biglobosa seeds. However, the non-fermented seeds should not be ignored. Both fermented and non-fermented seeds can be used as valuable ingredients for the formulation of functional foods.
Collapse
Affiliation(s)
- Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100 - 80055, Portici, Naples, Italy
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy.
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy
| |
Collapse
|
11
|
Xiang X, Jiang Q, Yang H, Zhou X, Chen Y, Chen H, Liu S, Chen L. A review on shellfish polysaccharides: Extraction, characterization and amelioration of metabolic syndrome. Front Nutr 2022; 9:974860. [PMID: 36176638 PMCID: PMC9513460 DOI: 10.3389/fnut.2022.974860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish are diverse, widely distributed organisms that are a rich source of biological resources. Polysaccharides are an important components in shellfish, hence a great deal of attention has been directed at isolation and characterization of shellfish polysaccharides because of their numerous health benefits. Differences in shellfish species, habits, and environment result in the diversity of the structure and composition of polysaccharides. Thus, shellfish polysaccharides possess special biological activities. Studies have shown that shellfish polysaccharides exert biological activities, including antioxidant, antitumor, immune-regulation, hypolipidemic, antihypertensive, and antihyperglycemic effects, and are widely used in cosmetics, health products, and medicine. This review spotlights the extraction and purification methods of shellfish polysaccharides and analyses their structures, biological activities and conformational relationships; discusses the regulatory mechanism of shellfish polysaccharides on hyperlipidemia, hypertension, and hyperglycemia caused by lipid metabolism disorders; and summarizes its alleviation of lipid metabolism-related diseases. This review provides a reference for the in-depth development and utilization of shellfish polysaccharides as a functional food to regulate lipid metabolism-related diseases. To achieve high value utilization of marine shellfish resources while actively promoting the development of marine biological industry and health industry.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- *Correspondence: Shulai Liu,
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lin Chen,
| |
Collapse
|
12
|
Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zohreh Karami
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kiattisak Duangmal
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Ding Z, Chen K, Chen Y. Research on ACEI of Low-Molecular-Weight Peptides from Hirudo Nipponia Whitman. Molecules 2022; 27:molecules27175421. [PMID: 36080189 PMCID: PMC9457961 DOI: 10.3390/molecules27175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is the primary pathway for regulating blood pressure in the body, and angiotensin-converting enzymes (ACEs) play a crucial role in it. Hirudo nipponia is an invertebrate that contains a variety of active peptides; however, there are no studies on the ACE inhibitory activity of hirudo. In the present study, our aim was to identify the active peptides in hirudo based on active peptide database analysis, unexpectedly filling the gap in hirudo ACE inhibitory activity research. Prep-HPLC was used to separate the part below 3 kD from hirudo. The peptide composition of the isolates was obtained based on Orbitrap LC-MS. The activity of each group of peptides was predicted by the database and the activity was determined by bioassay. Peptides with validation activity were screened through the database. In total, 337 peptides and 18 peptides matching the NCBI leech protein database were identified. All four fractions showed ACE inhibitory activity, and the IC50 was 0.8266, 0.2708, 0.4432, and 0.1764 mg/mL, respectively. Six screened peptides showed good affinity for ACE. This work reveals for the first time that low-molecular-weight peptides from H. nipponia have ACE inhibitory activity, which can provide a new explanation for leech treatment of hypertension.
Collapse
Affiliation(s)
- Zhao Ding
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Keli Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yunzhong Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Provincial Chinese Medicine-Derived Health Food Engineering Research Center, Wuhan 430065, China
- Correspondence: ; Tel.: +86-15927199719
| |
Collapse
|
14
|
Salaria S, Boatwright JL, Thavarajah P, Kumar S, Thavarajah D. Protein Biofortification in Lentils ( Lens culinaris Medik.) Toward Human Health. FRONTIERS IN PLANT SCIENCE 2022; 13:869713. [PMID: 35449893 PMCID: PMC9016278 DOI: 10.3389/fpls.2022.869713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 05/11/2023]
Abstract
Lentil (Lens culinaris Medik.) is a nutritionally dense crop with significant quantities of protein, low-digestible carbohydrates, minerals, and vitamins. The amino acid composition of lentil protein can impact human health by maintaining amino acid balance for physiological functions and preventing protein-energy malnutrition and non-communicable diseases (NCDs). Thus, enhancing lentil protein quality through genetic biofortification, i.e., conventional plant breeding and molecular technologies, is vital for the nutritional improvement of lentil crops across the globe. This review highlights variation in protein concentration and quality across Lens species, genetic mechanisms controlling amino acid synthesis in plants, functions of amino acids, and the effect of antinutrients on the absorption of amino acids into the human body. Successful breeding strategies in lentils and other pulses are reviewed to demonstrate robust breeding approaches for protein biofortification. Future lentil breeding approaches will include rapid germplasm selection, phenotypic evaluation, genome-wide association studies, genetic engineering, and genome editing to select sequences that improve protein concentration and quality.
Collapse
Affiliation(s)
- Sonia Salaria
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Jon Lucas Boatwright
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | | | - Shiv Kumar
- Biodiversity and Crop Improvement Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat-Institute, Rabat, Morocco
| | - Dil Thavarajah
- Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- *Correspondence: Dil Thavarajah,
| |
Collapse
|
15
|
Bautista-Expósito S, Vandenberg A, Peñas E, Frias J, Martínez-Villaluenga C. Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and Bioactivity of Resistant Peptides. FRONTIERS IN PLANT SCIENCE 2021; 12:754287. [PMID: 34759946 PMCID: PMC8575454 DOI: 10.3389/fpls.2021.754287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 05/03/2023]
Abstract
Germination offers advantages to improve legume protein digestibility as it disintegrates seed structure and hydrolyzes proteins and anti-nutrients. Seed permeability (related to polyphenol content of seed coats) is an important factor affecting the duration of seed germination and its impact on protein digestibility and bioactivity. The objective was to compare the effect of seed germination on protease activity, structure, and proteolysis of four selected legumes with contrasting seed coat polyphenol profiles (gray zero-tannin lentil [GZL], beluga lentil [BL], and dehulled red lentil [DL]; and zero tannin/low vicine-convicine fava bean [ZF]). Protein hydrolysis was characterized during germination and digestion with respect to proteins, peptides, and free amino acids (FAAs). In vitro antihypertensive and antioxidant activities of digests were investigated, and the peptidomic characterization [high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS)] and identification of bioactive fragments in intestinal digests were performed. Regardless of the seed type, germination increased protease activity and reduced the levels of phytic acid, trypsin inhibitors, and tannins (only in BL). A significant proteolysis of the 7S and 11S globulins and a concomitant increase of peptides and FAAs were observed in all sprouted legumes. Digestion kinetics in sprouts revealed a faster generation of FAAs and peptides than in dry seeds, with changes being more evident for DL, associated with a faster imbibition, germination, and sprout growth. In contrast, BL sprouts showed the lowest protein digestibility, likely due to a lower protease activity, seed structure disintegration, and higher anti-nutrient levels in comparison to GZL, DL, and ZF. Moreover, the digestion of sprouts resulted in a higher number of resistant peptides in DL and ZF that matched with previously reported bioactive sequences, suggesting a promising health potential of legume sprouts that was confirmed in vitro. The results suggested that the germination process improved protein digestibility and the health-promoting potential of lentil and fava bean proteins although these changes were more evident in DL due to its rapid imbibition, faster germination, and sprout development. This study will provide important information for either plant breeders to develop legume varieties with permeable seed coats or food producers that could use dehulled seeds for efficient production of sprouts as sustainable food sources of plant proteins with improved nutritional and healthy properties.
Collapse
Affiliation(s)
- Sara Bautista-Expósito
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Albert Vandenberg
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
16
|
Acquah C, Ohemeng-Boahen G, Power KA, Tosh SM. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diversification of plant-based food sources is necessary to improve global food and nutritional security. Pulses have enormous nutritional and health benefits in preventing malnutrition and chronic diseases while contributing positively to reducing environmental footprint. Pulses are rich in diverse nutritional and non-nutritional constituents which can be classified as bioactive compounds due to their biological effect. These bioactive compounds include but are not limited to proteins, dietary fibres, resistant starch, polyphenols, saponins, lectins, phytic acids, and enzyme inhibitors. While these compounds are of importance in ensuring food and nutritional security, some of the bioactive constituents have ambivalent properties. These properties include having antioxidant, anti-hypertensive and prebiotic effects. Others have a deleterious effect of decreasing the digestibility and/or bioavailability of essential nutrients and are therefore termed antinutritional factors/compounds. Various processing techniques exist to reduce the content of antinutritional factors found in pulses. Traditional processing of pulses comprises soaking, dehulling, milling, germination, fermentation, and boiling, while examples of emerging processing techniques include microwaving, extrusion, and micronization. These processing techniques can be tailored to purpose and pulse type to achieve desired results. Herein, the nutritional qualities and properties of bioactive compounds found in pulses in meeting the sustainable development goals are presented. It also discusses the effect of processing techniques on the nutritional and non-nutritional constituents in pulses as well as the health and environmental benefits of pulse-diet consumption. Major challenges linked to pulses that could limit their potential of being ideal crops in meeting the sustainable development goal 2 agenda are highlighted.
Collapse
|
17
|
Dia VP. Plant sources of bioactive peptides. BIOLOGICALLY ACTIVE PEPTIDES 2021:357-402. [DOI: 10.1016/b978-0-12-821389-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|