1
|
Meng Y, Zhao H, Dong C, He Z, Long Z. Eco-friendly and flexible polysaccharide-based packaging films for fruit preservation. Int J Biol Macromol 2024; 281:136132. [PMID: 39419685 DOI: 10.1016/j.ijbiomac.2024.136132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Food safety and wastage caused by fruit deterioration is a serious global problem. Effective packaging systems for extending the freshness period of fruit play a key role in food safety. In this work, we constructed an eco-friendly and flexible polysaccharide-based packaging film based on hydroxypropyl guar (HPG), cellulose nanocrystals (CNCs), deep eutectic solvents (DES) and anthocyanin (Anth). DES could endow polysaccharide films with multiple hydrogen bond numbers and good stability. Hydroxypropyl guar/cellulose nanocrystals/anthocyanin with 0.2 g deep eutectic solvents (HCA-DES0.2) had good tensile properties, oxygen barrier properties (3.01 cm3/m2·day·Pa), water resistance (WCA 111.97°), antibacterial (CFU ˂ 103), and transparency (55.4 %). The preservation tests of grape and blueberry showed that the shelf life of these two fruits was 12-20 days, and the polysaccharide film had great application potential in fruit preservation.
Collapse
Affiliation(s)
- Yahui Meng
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Huifang Zhao
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhibin He
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Zhu Long
- Laboratory of Papermaking, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Luo R, Peng Z, Wu N, Zhang L, Peng B, Shao R, Xu W, Yang L. Development of antioxidant arabinoxylan-tea polyphenol composite films for enhanced preservation of fresh grapes. Int J Biol Macromol 2024; 281:135867. [PMID: 39443169 DOI: 10.1016/j.ijbiomac.2024.135867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
In this study, arabinoxylan (AX) was used as a substrate, and tea polyphenol (TP) as a functional additive to create degradable, non-polluting, and antioxidant packaging materials. The effects of different TP concentrations on light transmittance and antioxidant activity of the AX-TP composite films were analyzed. The colors of the films gradually deepened with increasing TP content. The maximum scavenging rate of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals using the AX-TP composite film solution of 59.13 ± 2.19 % was achieved at the TP concentration of 2.0 %. AX-TP composite films with different TP concentrations were applied to the surfaces of grapes, and the sensory quality, shriveling and decay rates, titratable acid, and weight loss rate of grapes during storage were evaluated using data from different experimental groups. The AX-TP composite films coated on grapes reduced the transpiration of water in the fruit and delayed grape spoilage, demonstrating an excellent preservation effect. These results show that AX-TP composite films increase the shelf life of fresh grapes.
Collapse
Affiliation(s)
- Rongrong Luo
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zimeng Peng
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Li Zhang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bin Peng
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Lei Yang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
3
|
Cui T, Gine GR, Lei Y, Shi Z, Jiang B, Yan Y, Zhang H. Ready-to-Cook Foods: Technological Developments and Future Trends-A Systematic Review. Foods 2024; 13:3454. [PMID: 39517238 PMCID: PMC11545181 DOI: 10.3390/foods13213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Ready-to-cook (RTC) foods can significantly improve the cooking experience of busy or unskillful consumers, based on production involving technical combinations of food processing and packaging. Initialized by a market survey of 172 products in Beijing, this systematic review analyzes RTC foods' development status according to ingredients, packaging, and storage conditions to further clarify the scope of RTC foods. The working principles and efficacy of various food processing techniques, such as washing, cutting, marinating, and frying, and packaging design or innovations such as modified atmosphere packaging (MAP) were both summarized in detail, with attention to their ability to extend shelf life, reduce safety risks, and maximize production efficiency in RTC food production. The cutting-edge technologies that may potentially apply in the RTC food processing or packaging sector were compared with current approaches to visualize the direction of future developments. In conclusion, we have observed the specific pattern of RTC food varieties and packaging formats in the Beijing market and revealed the advancements in RTC food technologies that will continue playing a critical role in shaping this growing market, while challenges in scalability, cost-efficiency, and sustainability remain key areas for future research. The data and perspectives presented will articulate the conceptions and existing challenges of RTC food, foster consumer perception and recognition of similar products, and deliver useful guidance for stakeholders interested in such products.
Collapse
Affiliation(s)
- Tianqi Cui
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Goh Rui Gine
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Yuqin Lei
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Zhiling Shi
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Beichen Jiang
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Yifan Yan
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Hongchao Zhang
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
- Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agriculture University, Beijing 100083, China
| |
Collapse
|
4
|
Lu Y, Liu G, Zhang K, Wang Z, Xiao P, Liu C, Deng L, Li F, Pan G, He S, Gao J, Zhang J. Sprayable oxidized polyvinyl alcohol with improved degradability and sufficient mechanical property for fruit preservation. J Mater Chem B 2024; 12:8716-8732. [PMID: 39136412 DOI: 10.1039/d4tb00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Besides their limited preservation capacity and low biosafety, traditional fruit preservation procedures exacerbate "white pollution" because they utilize excessive plastic. Herein, an environmentally friendly one-pot method was developed to obtain degradable polyvinyl alcohol (PVA), where the hydroxyl radicals generated through the reaction between hydrogen peroxide (H2O2) and iron ions functioned to oxidize PVA. The oxidized PVA (OPVA-1.0) with abundant ketone groups, reduced crystallinity, and short molecular chains was completely degraded into H2O and CO2 after being buried in the soil for ∼60 days. An improvement in its degradation rate did not weaken the mechanical properties of OPVA-1.0 compared to other modified PVA films because the adverse effect of decreased crystallinity on its mechanical performance was offset by its ion coordination. Alternatively, the tensile strength or toughness of OPVA-1.0 was enhanced due to its internal multi-level interactions including molecular chain entanglement, hydrogen bonding, and metal coordination bonds. More interestingly, OPVA-1.0 was water-welded into various products in a recyclable way owing to its reversible physical bonds, where it was sprayed, dipped, or brushed conformally onto different perishable fruits to delay their ripening by 5-14 days. Based on the cellular biocompatibility and biosafety evaluations in mice, OPVA-1.0 obtained by the facile oxidation strategy was demonstrated to alleviate "white pollution" and delay the ripening of fruits effectively.
Collapse
Affiliation(s)
- Yi Lu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Guoming Liu
- Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou 350001, P. R. China
- Department of Orthopedics, South Hospital of Fujian Province, Jinrong South Road, Fuzhou 350028, P. R. China
| | - Kaixin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Ziyi Wang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Peijie Xiao
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Changhua Liu
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Longying Deng
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Fenglu Li
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Gaoxing Pan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
| | - Shuxian He
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Jin Zhang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China.
| |
Collapse
|
5
|
Dai H, Lv T, Liu S, Luo Y, Wang Y, Wang H, Ma L, Wu J, Zhang Y. Preparation of nanocellulose light porous material adsorbed with tannic acid and its application in fresh-keeping pad. Food Chem 2024; 444:138676. [PMID: 38335683 DOI: 10.1016/j.foodchem.2024.138676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
This study fabricated nanocellulose lightweight porous material (TOCNF-G-LPM-TA) as absorbent fresh-keeping pad for meat products, using TEMPO-oxidized cellulose nanofibril (TOCNF) and gelatin as structural skeleton and tannic acid (TA) as antibacterial component of TOCNF lightweight porous material (TOCNF-G-LPM). The adsorption kinetics, capacity and mechanism of TOCNF-G-LPM in different initial concentrations of TA solutions were investigated, the antioxidant and antibacterial properties of TOCNF-G-LPM-TA and its fresh-keeping effect on refrigerated pork at 4 ℃ were studied. Due to strong hydrogen bonding and porous structure, TOCNF-G-LPM exhibited excellent TA adsorption ability (230 mg/g) conforming with pseudo-second-order kinetic and Langmuir isotherm models. TA endowed TOCNF-G-LPM with good antioxidant and antibacterial activities. According to changes in appearance, pH and TVB-N values of pork during storage at 4 ℃, TOCNF-G-LPM-TA effectively extended the shelf life of refrigerated pork. This work provides a facile method for preparing nanocellulose based absorbent fresh-keeping pads.
Collapse
Affiliation(s)
- Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Tianyi Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Siyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyuan Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jihong Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
6
|
Rath RJ, Zhang WB, Kavehei O, Dehghani F, Naficy S, Farajikhah S, Oveissi F. Developing a Chemiresistive Gas Sensor Array for Simultaneous Detection of Ammonia and Carbon Dioxide Gases. ACS Sens 2024; 9:2836-2845. [PMID: 38753397 DOI: 10.1021/acssensors.3c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Chemiresistive polymer-based sensors are promising platforms for monitoring various gases and volatile organic compounds. While they offer appealing attributes, such as ease of fabrication, flexibility, and cost-effectiveness, most of these sensors have a nearly identical response to cross-reactive gases, such as ammonia (NH3) and carbon dioxide (CO2). Aiming to address the shortcomings of chemiresistive polymer-based sensors in selectivity and simultaneous measurements of cross-reactive gases, a chemiresistive sensor array was developed consisting of components sensitive to carbon dioxide and ammonia as well as a control segment to provide the baseline. The designed system demonstrated a wide detection range for both ammonia (ranging from 0.05 to 1000 ppm) and carbon dioxide (ranging from 103 to 106 ppm) at both room and low temperatures (e.g., 4 °C). Our results also demonstrate the ability of this sensor array for the simultaneous detection of carbon dioxide and ammonia selectively in the presence of other gases and volatile organic compounds. Finally, the array was used to monitor CO2/NH3 in real food samples to demonstrate the potential for real-world applications.
Collapse
Affiliation(s)
- Ronil J Rath
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wesley B Zhang
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Syamak Farajikhah
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Farshad Oveissi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Wang L, Liu M, Luo Z, Chen Y, Qi Y, Ye M, Chen F, Dai F. Effect of modified atmosphere package on attributes of sweet bamboo shoots after harvest. FRONTIERS IN PLANT SCIENCE 2024; 15:1431097. [PMID: 38947949 PMCID: PMC11212469 DOI: 10.3389/fpls.2024.1431097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Tender bamboo shoots undergo rapid senescence that influences their quality and commercial value after harvest. In this study, the tender sweet bamboo shoots ('Wensun') were packed by a passive modified atmosphere packaging (PMAP) to inhibit the senescence process, taking polyethylene package as control. The increase in CO2 and the decrease in O2 gas concentrations in the headspace atmosphere of the packages were remarkably modified by PMAP treatments. The modified gas atmosphere packaging inhibited the changes in firmness, as well as the content of cellulose, total pectin, and lignin in the cell walls of bamboo shoots. The enzymatic activities of cellulase, pectinase, and polygalacturonase that act on cell wall polysaccharides, and phenylalanine ammonia lyase, cinnamyl alcohol dehydrogenase, peroxidase, and laccase regulating the lignin biosynthesis were modified by PMAP treatment different from control during storage. The expression levels of the lignin biosynthesis genes PePAL3/4, PeCAD, Pe4CL5, PeC4H, PeCCOAOMT, PeCOMT, cellulose synthase PeCESA1, and related transcription factors PeSND2, PeKNAT7, PeMYB20, PeMYB63, and PeMYB85 were clearly regulated. These results suggest that PMAP efficiently retards the changes in lignin and cell wall polysaccharides, thus delaying the senescence of tender sweet bamboo shoots during storage.
Collapse
Affiliation(s)
- Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | | | | | | | | | | | | | - Fanwei Dai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| |
Collapse
|
8
|
Crescente G, Cascone G, Volpe MG, Moccia S. Application of PLA-Based Films to Preserve Strawberries' Bioactive Compounds. Foods 2024; 13:1844. [PMID: 38928785 PMCID: PMC11202936 DOI: 10.3390/foods13121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Poly-(Lactic Acid) (PLA) is regarded as one of the most promising bio-based polymers due to its biocompatibility, biodegradability, non-toxicity, and processability. The investigation of the potential of PLA films in preserving the quality of strawberries is fully in line with the current directives on the sustainability of food packaging. The study aims to investigate the effects of PLA films on strawberries' physical and chemical properties, thereby determining whether they can be used as a post-harvest solution to control antioxidant loss, reduce mold growth, and extend the shelf-life of strawberries. Well-designed PLA films with different-sized holes obtained by laser perforation (PLA0, PLA16 and PLA23) were tested against a conventional packaging polypropylene (PP) tray for up to 20 days of storage. Weight loss and mold growth were significantly slower in strawberries packed in PLA films. At the same time, PLA-based films effectively preserved the deterioration of vitamin C content, polyphenols and antioxidant activity compared to the control. Furthermore, among all, the micro-perforated PLA film (PLA23) showed better preservation in the different parameters evaluated. These results could effectively inhibit the deterioration of fruit quality, showing promising expectations as an effective strategy to extend the shelf-life of strawberries.
Collapse
Affiliation(s)
- Giuseppina Crescente
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
| | - Giovanni Cascone
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
- National Agency for New Technologies, Energy and Sustainable Economic Development, 80055 Portici, Italy
| | - Maria Grazia Volpe
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
| | - Stefania Moccia
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; (G.C.); (G.C.); (M.G.V.)
| |
Collapse
|
9
|
Wang W, Zhang L, Hu P, Wang Y, Jin X, Chen R, Zhang W, Ni Y, Wang J. Multifunctional packaging film with sustained release behavior triggered by pH microenvironment for efficient preservation of pork. Food Chem 2024; 438:138007. [PMID: 37983994 DOI: 10.1016/j.foodchem.2023.138007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
To tackle microbial contamination and spoilage during pork storage, transportation, and sales, a novel packaging film with exogenously driven controlled release behavior was designed through the demand-directed preparation of the emulsion of shellac-encapsulated cinnamaldehyde nano-capsules (SNCs) and the ingenious integration of chitosan (CS) film matrix. Among them, the SNCs were synthesized using the solvent exchange method, allowing controlled release of cinnamaldehyde (CA) in response to volatile alkaline substances present in the meat. The electrostatic interaction between SNCs and CS molecules improved the thermal stability, water resistance, tensile strength, and viscosity of the film-forming solution, while the CA in SNCs enhanced UV resistance and antimicrobial properties of the film. Notably, the CS film with SNC-100 loaded (CSNCs-100 film) achieved 99% inhibition against both E. coli and S. aureus, regulated environmental moisture, and prolonged the freshness duration of pork by an impressive six days.
Collapse
Affiliation(s)
- Wenze Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Puyuan Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuxuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Hu J, Liu B, Sun T, Zhang J, Yun X, Dong T. Towards ductile and high barrier poly(L-lactic acid) ultra-thin packaging film by regulating chain structures for efficient preservation of cherry tomatoes. Int J Biol Macromol 2023; 251:126335. [PMID: 37582432 DOI: 10.1016/j.ijbiomac.2023.126335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
The irreconcilable paradox between barrier performance and ductility is a "stumbling block" restricting the development of poly(L-lactic acid) (PLLA) films in the packaging industry. In this work, we reported the fabrication of an ultra-thin PLLA-based film with barrier properties and ductility by adjusting the polarity and conformational behavior of the polymer chains. Firstly, a novel unsaturated poly(L-lactic acid-co-butyrate itaconate) P(LA-BI) copolymer containing CC double bonds was synthesized using melt polycondensation. The results reveal that the addition of 60 % of P(LA-BI) enables PLLA film to achieve an elongation at a break of 83.6 % due to P(LA-BI) containing partially branched structures, which resulted in the polymer chains being arranged more in a high-energy gg conformer. Meanwhile, because of the large number of CO polar groups in P(LA-BI), PLLA/P(LA-BI)60 film show CO2 and O2 permeability coefficients (CDP and OP) of 1.8 and 0.45 × 10-8 g·m·m-2·h-1·Pa-1 respectively, which means that it has excellent gas barrier properties. Moreover, PLLA/P(LA-BI)60 film shows a 33.3 % increase in CO2/O2 ratio and an excellent ultraviolet (UV) barrier performance compared to neat PLLA. Preservation results suggested that the CO2 and O2 levels within the package could be regulated by varying the amount of P(LA-BI) added. Among them, PLLA/P(LA-BI)40 film generated a more desirable CO2 and O2 atmosphere for cherry tomatoes preservation, which was reflected by the delaying of senescence, discoloration, and decay, inhibition of oxidative cell damage through reduced malondialdehyde production, and maintenance of nutritional and flavor substances in cherry tomatoes. This PLLA-based film offers the advantages of operational simplicity, environmental friendliness, and inexpensive cost, making it great promising for food preservation and other applications requiring barrier properties and ductility.
Collapse
Affiliation(s)
- Jian Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Bo Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Tao Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Jiatao Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
11
|
Ahmed AR, Aleid SM, Mohammed M. Impact of Modified Atmosphere Packaging Conditions on Quality of Dates: Experimental Study and Predictive Analysis Using Artificial Neural Networks. Foods 2023; 12:3811. [PMID: 37893704 PMCID: PMC10606818 DOI: 10.3390/foods12203811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Dates are highly perishable fruits, and maintaining their quality during storage is crucial. The current study aims to investigate the impact of storage conditions on the quality of dates (Khalas and Sukary cultivars) at the Tamer stage and predict their quality attributes during storage using artificial neural networks (ANN). The studied storage conditions were the modified atmosphere packing (MAP) gases (CO2, O2, and N), packaging materials, storage temperature, and storage time, and the evaluated quality attributes were moisture content, firmness, color parameters (L*, a*, b*, and ∆E), pH, water activity, total soluble solids, and microbial contamination. The findings demonstrated that the storage conditions significantly impacted (p < 0.05) the quality of the two stored date cultivars. The use of MAP with 20% CO2 + 80% N had a high potential to decrease the rate of color transformation and microbial growth of dates stored at 4 °C for both stored date cultivars. The developed ANN models efficiently predicted the quality changes of stored dates closely aligned with observed values under the different storage conditions, as evidenced by low Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) values. In addition, the reliability of the developed ANN models was further affirmed by the linear regression between predicted and measured values, which closely follow the 1:1 line, with R2 values ranging from 0.766 to 0.980, the ANN models demonstrate accurate estimating of fruit quality attributes. The study's findings contribute to food quality and supply chain management through the identification of optimal storage conditions and predicting the fruit quality during storage under different atmosphere conditions, thereby minimizing food waste and enhancing food safety.
Collapse
Affiliation(s)
- Abdelrahman R. Ahmed
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.R.A.); (S.M.A.)
- Home Economics Department, Faculty of Specific Education, Ain Shams University, Cairo 11566, Egypt
| | - Salah M. Aleid
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; (A.R.A.); (S.M.A.)
| | - Maged Mohammed
- Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Menoufia University, Shebin El Koum 32514, Egypt
| |
Collapse
|
12
|
Chavan P, Yadav R, Sharma P, Jaiswal AK. Laser Light as an Emerging Method for Sustainable Food Processing, Packaging, and Testing. Foods 2023; 12:2983. [PMID: 37627984 PMCID: PMC10453059 DOI: 10.3390/foods12162983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
In this review article, we systematically investigated the diverse applications of laser technology within the sphere of food processing, encompassing techniques such as laser ablation, microbial inactivation, state-of-the-art food packaging, and non-destructive testing. With a detailed exploration, we assess the utility of laser ablation for the removal of surface contaminants from foodstuffs, while also noting the potential financial and safety implications of its implementation on an industrial scale. Microbial inactivation by laser shows promise for reducing the microbial load on food surfaces, although concerns have been raised about potential damage to the physio-characteristics of some fruits. Laser-based packaging techniques, such as laser perforation and laser transmission welding, offer eco-friendly alternatives to traditional packaging methods and can extend the shelf life of perishable goods. Despite the limitations, laser technology shows great promise in the food industry and has the potential to revolutionize food processing, packaging, and testing. Future research needs to focus on optimizing laser equipment, addressing limitations, and developing mathematical models to enhance the technology's uses.
Collapse
Affiliation(s)
- Prasad Chavan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144402, India;
| | - Rahul Yadav
- ICAR-Directorate of Floricultural Research, Pune 411036, India;
| | - Pallavi Sharma
- Quality Management Officer, Fresh Company GmbH, 71384 Weinstadt, Germany;
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), School of Food Science and Environmental Health, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
13
|
Zaini HM, Saallah S, Roslan J, Sulaiman NS, Munsu E, Wahab NA, Pindi W. Banana biomass waste: A prospective nanocellulose source and its potential application in food industry - A review. Heliyon 2023; 9:e18734. [PMID: 37554779 PMCID: PMC10404743 DOI: 10.1016/j.heliyon.2023.e18734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Bananas are among the most produced and consumed fruit all over the world. However, a vast amount of banana biomass is generated because banana trees bear fruit only once in their lifetime. This massive amount of biomass waste is either disposed of in agricultural fields, combusted, or dumped at plantations, thus posing environmental concerns. Nanocellulose (NC) extraction from this source can be one approach to improve the value of banana biomass. Owing to its superb properties, such as high surface area and aspect ratio, good tensile strength, and high thermal stability, this has facilitated nanocellulose application in the food industry either as a functional ingredient, an additive or in food packaging. In this review, two different applications of banana biomass NC were identified: (i) food packaging and (ii) food stabilizers. Relevant publications were reviewed, focusing on the nanocellulose extraction from several banana biomass applications as food additives, as well as on the safety and regulatory aspects. Ultimately, further research is required to prompt a perspicuous conclusion about banana biomass NC safety, its potential hazards in food applications, as well as its validated standards for future commercialization.
Collapse
Affiliation(s)
- Hana Mohd Zaini
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jumardi Roslan
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Elisha Munsu
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Noorakmar A. Wahab
- Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Functional Foods Research Group, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
14
|
Lin J, Meng H, Guo X, Tang Z, Yu S. Natural Aldehyde-Chitosan Schiff Base: Fabrication, pH-Responsive Properties, and Vegetable Preservation. Foods 2023; 12:2921. [PMID: 37569191 PMCID: PMC10418757 DOI: 10.3390/foods12152921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The aim of the present work was to fabricate Schiff base compounds between chitosan and aldehydes and use the resultant aldehyde-chitosan Schiff bases for broccoli preservation. Using an element analyzer, the degree of substitution was calculated as 68.27-94.65%. The aldehyde-chitosan Schiff bases showed acidic sensitivity to rapid hydrolysis for releasing aldehyde at a buffer solution of pH 4-6, in which more than 39% of the aldehydes were released within 10 h. The release of aldehydes endows the aldehyde-chitosan Schiff bases with a better antibacterial activity at pH 5 than at pH 7. In a simulated CO2 (5-15%) atmosphere with high humidity (92%), the hydrolysis of imine bonds (C=N) was triggered and continuously released aldehyde, even without direct contact with the aqueous phase. The application of aldehyde-chitosan Schiff bases significantly extended the shelf life of broccoli from 4 d to 5-7 d and decreased the weight loss of broccoli during storage. In summary, the fabrication of aldehyde-chitosan Schiff bases and the strategy of using pH-response imine bond (C=N) hydrolysis (thus releasing aldehyde to kill microorganisms) were feasible for use in developing EO-incorporated intelligent food packages for vegetable preservation.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Hecheng Meng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zhongsheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521011, China
| | - Shujuan Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; (J.L.)
| |
Collapse
|
15
|
Huang J, Zhang M, Mujumdar AS, Ma Y. Technological innovations enhance postharvest fresh food resilience from a supply chain perspective. Crit Rev Food Sci Nutr 2023; 64:11044-11066. [PMID: 37409544 DOI: 10.1080/10408398.2023.2232464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Fresh food is rich in nutrients but is usually seasonal, perishable, and challenging to store without degradation of quality. The inherent limitations of various preservation technologies can result in losses in all stages of the supply chain. As consumers of fresh foods have become more health-conscious, new technologies for intelligent, energy-efficient, and nondestructive preservation and processing have emerged as a research priority in recent years. This review aims to summarize the quality change characteristics of postharvest fruits, vegetables, meats, and aquatic products. It critically analyzes research progress and applications of various emerging technologies, which include: the application of high-voltage electric field, magnetic field, electromagnetic field, plasma, electrolytic water, nanotechnology, modified atmosphere packaging, and composite bio-coated film preservation technologies. An evaluation is presented of the benefits and drawbacks of these technologies, as well as future development trends. Moreover, this review provides guidance for design of the food supply chain to take advantage of various technologies used to process food, reduce losses and waste of fresh food, and this improve the overall resilience of the supply chain.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
16
|
Hu Q, Zhou F, Ly NK, Ordyna J, Peterson T, Fan Z, Wang S. Development of Multifunctional Nanoencapsulated trans-Resveratrol/Chitosan Nutraceutical Edible Coating for Strawberry Preservation. ACS NANO 2023; 17:8586-8597. [PMID: 37125693 DOI: 10.1021/acsnano.3c01094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Phytochemical nanoencapsulation for nutrient delivery and edible coatings for perishable food preservation are two emerging technologies. Leveraging the strong antimicrobial function of phytochemical nutrients, we propose convergent research to integrate the two technologies by embedding phytochemical-encapsulated nanoparticles in an edible coating on fresh fruits to achieve multiple functions. In particular, we report the study of an edible coating on strawberries that is composited of trans-resveratrol (R)-encapsulated nanoparticles (RNPs) embedded in a chitosan (CS) matrix. The biodegradable and biocompatible RNPs significantly increased the aqueous solubility of R by 150-fold and bioavailability by 3.5-fold after oral administration. Our results demonstrated the abilities of the RNP-embedded CS edible coating to diminish dehydration, prevent nutrient loss, inhibit microbe growth, increase nutraceutical value, preserve strawberry quality, and extend shelf life during storage at both 22 and 4 °C. Such a phytochemical nanoencapsulation-based edible coating is promising for the dual purposes of enhancing nutrient delivery and preserving perishable foods.
Collapse
Affiliation(s)
- Qiaobin Hu
- College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Ngoc Kim Ly
- College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Jerryck Ordyna
- College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Tiffany Peterson
- College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Zhaoyang Fan
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| |
Collapse
|
17
|
Ye S, Chen M, Liu Y, Gao H, Yin C, Liu J, Fan X, Yao F, Qiao Y, Chen X, Shi D, Zhang Y. Effects of nanocomposite packaging on postharvest quality of mushrooms (
Stropharia rugosoannulata
) from the perspective of water migration and microstructure changes. J Food Saf 2023. [DOI: 10.1111/jfs.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Shuang Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering Hubei University of Technology Wuhan China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Maobin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering Hubei University of Technology Wuhan China
| | - Yani Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering Hubei University of Technology Wuhan China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Hong Gao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Chaomin Yin
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Jingyu Liu
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau Shanxi Agricultrual University Taigu Shanxi China
| | - Xiuzhi Fan
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Fen Yao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Xueling Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Defang Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro‐Products Processing and Nuclear agricultural Technology Hubei Academy of Agricultural Sciences Wuhan People's Republic of China
| | - Yu Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering Hubei University of Technology Wuhan China
| |
Collapse
|
18
|
Multifunctional Poly(3-hydroxybutyrate) composites with MoS2 for food packaging applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
19
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
20
|
Cheng H, Chen L, McClements DJ, Xu H, Long J, Zhao J, Xu Z, Meng M, Jin Z. Recent advances in the application of nanotechnology to create antioxidant active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2890-2905. [PMID: 36178259 DOI: 10.1080/10408398.2022.2128035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nanotechnology is being used to create innovative food packaging systems that can inhibit the oxidation of foods, thereby improving their quality, safety, and shelf life. These nano-enabled antioxidant packaging materials may therefore increase the healthiness and sustainability of the food supply chain. Recent progress in the application of nanotechnology to create antioxidant packaging materials is reviewed in this paper. The utilization of nanoparticles, nanofibers, nanocrystals, and nanoemulsions to incorporate antioxidants into these packaging materials is highlighted. The application of nano-enabled antioxidant packaging materials to preserve meat, seafood, fruit, vegetable, and other foods is then discussed. Finally, future directions and challenges in the development of this kind of active packaging material are highlighted to stimulate new areas of future research. Nanotechnology has already been used to create antioxidant packaging materials that inhibit oxidative deterioration reactions in foods, thereby prolonging their shelf life and reducing food waste. However, the safety, cost, efficacy, and scale-up of this technology still needs to be established before it will be commercially viable for many applications.
Collapse
Affiliation(s)
- Hao Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | | | - Hao Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co, Ltd, Zhongshan, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Ting‐ting L, Jing Q, Cheng Y. Equilibrium modified atmosphere packaging on postharvest quality and antioxidant activity of strawberry. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Ting‐ting
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering School of Mechanical Engineering, Jiangnan University, 1800 Li Hu Avenue Wuxi 214122 Jiangsu China
| | - Qian Jing
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering School of Mechanical Engineering, Jiangnan University, 1800 Li Hu Avenue Wuxi 214122 Jiangsu China
| | - Yin Cheng
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering School of Mechanical Engineering, Jiangnan University, 1800 Li Hu Avenue Wuxi 214122 Jiangsu China
| |
Collapse
|
22
|
Marzano M, Calasso M, Caponio GR, Celano G, Fosso B, De Palma D, Vacca M, Notario E, Pesole G, De Leo F, De Angelis M. Extension of the shelf-life of fresh pasta using modified atmosphere packaging and bioprotective cultures. Front Microbiol 2022; 13:1003437. [PMID: 36406432 PMCID: PMC9666361 DOI: 10.3389/fmicb.2022.1003437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial stability of fresh pasta depends on heat treatment, storage temperature, proper preservatives, and atmosphere packaging. This study aimed at improving the microbial quality, safety, and shelf life of fresh pasta using modified atmosphere composition and packaging with or without the addition of bioprotective cultures (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium spp., and Bacillus coagulans) into semolina. Three fresh pasta variants were made using (i) the traditional protocol (control), MAP (20:80 CO2:N2), and barrier packaging, (ii) the experimental MAP (40:60 CO2:N2) and barrier packaging, and (iii) the experimental MAP, barrier packaging, and bioprotective cultures. Their effects on physicochemical properties (i.e., content on macro elements, water activity, headspace O2, CO2 concentrations, and mycotoxins), microbiological patterns, protein, and volatile organic compounds (VOC) were investigated at the beginning and the end of the actual or extended shelf-life through traditional and multi-omics approaches. We showed that the gas composition and properties of the packaging material tested in the experimental MAP system, with or without bioprotective cultures, positively affect features of fresh pasta avoiding changes in their main chemical properties, allowing for a storage longer than 120 days under refrigerated conditions. These results support that, although bioprotective cultures were not all able to grow in tested conditions, they can control the spoilage and the associated food-borne microbiota in fresh pasta during storage by their antimicrobials and/or fermentation products synergically. The VOC profiling, based on gas-chromatography mass-spectrometry (GC-MS), highlighted significant differences affected by the different manufacturing and packaging of samples. Therefore, the use of the proposed MAP system and the addition of bioprotective cultures can be considered an industrial helpful strategy to reduce the quality loss during refrigerated storage and to increase the shelf life of fresh pasta for additional 30 days by allowing the economic and environmental benefits spurring innovation in existing production models.
Collapse
Affiliation(s)
- Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Maria Calasso
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giusy Rita Caponio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy,Mirco Vacca,
| | - Elisabetta Notario
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Francesca De Leo
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Bari, Italy,*Correspondence: Francesca De Leo,
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
23
|
Shafiee M, Zare-Mehrjerdi Y, Govindan K, Dastgoshade S. A causality analysis of risks to perishable product supply chain networks during the COVID-19 outbreak era: An extended DEMATEL method under Pythagorean fuzzy environment. TRANSPORTATION RESEARCH. PART E, LOGISTICS AND TRANSPORTATION REVIEW 2022; 163:102759. [PMID: 35637683 PMCID: PMC9132792 DOI: 10.1016/j.tre.2022.102759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 06/02/2023]
Abstract
In nowadays world, firms are encountered with many challenges that can jeopardize business continuity. Recently, the coronavirus has brought some problems for supply chain networks. Remarkably, perishable product supply chain networks, such as pharmaceutical, dairy, blood, and food supply chains deal with more sophisticated situations. Generally, during pandemic outbreaks, the activities of these industries can play an influential role in society. On the one hand, products of these industries are considered to be daily necessities for living. However, on the other hand, there are many new restrictions to control the coronavirus prevalence, such as closing down all official gatherings and lessening the work hours, which subsequently affect the economic growth and gross domestic product. Therefore, risk assessment can be a useful tool to forestall side-effects of the coronavirus outbreaks on supply chain networks. To that aim, the decision-making trial and evaluation laboratory approach is used to evaluate the risks to perishable product supply chain networks during the coronavirus outbreak era. Feedback from academics was received to identify the most important risks. Then, experts in pharmaceutical, food, and dairy industries were inquired to specify the interrelations among risks. Then, Pythagorean fuzzy sets are employed in order to take the uncertainty of the experts' judgments into account. Finally, analyses demonstrated that the perishability of products, unhealthy working conditions, supply-side risks, and work-hours are highly influential risks that can easily affect other risk factors. Plus, it turned out that competitive risks are the most susceptive risk in the effect category. In other words, competition among perishable product supply chain networks has become even more fierce during the coronavirus outbreak era. The practical outcomes of this study provide a wide range of insights for managers and decision-makers in order to prevent risks to perishable product supply chain networks during the coronavirus outbreak era.
Collapse
Affiliation(s)
- Mohammad Shafiee
- Department of Industrial Engineering, Yazd University, Yazd, Iran
| | | | - Kannan Govindan
- Centre for Sustainable Supply Chain Engineering, Department of Technology and Innovation, Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
- China Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai, China
| | | |
Collapse
|
24
|
Zhong Z, Zhou L, Yu K, Jiang F, Xu J, Zou L, Du L, Liu W. Effects of Microporous Packaging Combined with Chitosan Coating on the Quality and Physiological Metabolism of Passion Fruit after Harvest. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Li X, Peng S, Yu R, Li P, Zhou C, Qu Y, Li H, Luo H, Yu L. Co-Application of 1-MCP and Laser Microporous Plastic Bag Packaging Maintains Postharvest Quality and Extends the Shelf-Life of Honey Peach Fruit. Foods 2022; 11:foods11121733. [PMID: 35741931 PMCID: PMC9222991 DOI: 10.3390/foods11121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Honey peach (Prunus persica L.) is highly nutritious; it is an excellent source of sugars, proteins, amino acids, vitamins, and mineral elements. However, it is a perishable climacteric fruit that is difficult to preserve. In this study, “Feicheng” honey peach fruit was used as a test material to investigate the synergistic preservation effect of 1-methylcyclopropene (1-MCP) and laser microporous film (LMF). The peach fruits were fumigated for 24 h with 2 μL L−1 1-MCP, then packed in LMF. In comparison with the control treatment, 1-MCP + LMF treatment markedly decreased the respiration rate, weight loss, and rot rate of peach fruits. Moreover, the combination of 1-MCP and LMF suppressed the increase in soluble solids (SS) and reducing sugars (RS), as well as the decrease in titratable acid (TA) and ascorbic acid (AsA). The combined application also maintained a high protopectin content and low soluble pectin content; it reduced the accumulation of superoxide anions (O2−) and hydrogen peroxide (H2O2). Except in a few samples, the catalase (CAT) and ascorbate peroxidase (APX) activities were higher when treated by 1-MCP + LMF. Conversely, the phenylalanine deaminase (PAL), peroxidase (POD), lipase, lipoxygenase (LOX), polygalacturonase (PG), β-glucosidase, and cellulase (Cx) activities were lower than in the control. Furthermore, 1-MCP + LMF treatment reduced the relative abundances of dominant pathogenic fungi (e.g., Streptomyces, Stachybotrys, and Issa sp.). The combined treatment improved the relative abundances of antagonistic fungi (e.g., Aureobasidium and Holtermanniella). The results indicated that the co-application of 1-MCP and LMF markedly reduced weight loss and spoilage, delayed the decline of nutritional quality, and inhibited the physiological and biochemical metabolic activities of peach during storage. These changes extended its shelf-life to 28 days at 5 °C. The results provide a reference for the commercial application of this technology.
Collapse
Affiliation(s)
- Xuerui Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Sijia Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Renying Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
| | - Puwang Li
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Chuang Zhou
- South Subtropical Crop Research Institute of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang 524091, China; (P.L.); (C.Z.)
| | - Yunhui Qu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Hong Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
| | - Haibo Luo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (S.P.); (R.Y.)
- Correspondence: (H.L.); (L.Y.)
| | - Lijuan Yu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China; (X.L.); (Y.Q.); (H.L.)
- Correspondence: (H.L.); (L.Y.)
| |
Collapse
|
26
|
Ghisoni F, Fiorati A, Florit F, Braceschi GP, Maria Lopez C, Rebecchi A, De Nardo L. Effects of the equilibrium atmosphere on Taleggio cheese storage in micro perforated packaging. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Rong L, Fan X, Li Y, Cao Y, Kong L, Zhu Z, Huang J. Fabrication of bio-based hierarchically structured ethylene scavenger films via electrospraying for fruit preservation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Berry TM, Defraeye T, Shrivastava C, Ambaw A, Coetzee C, Opara UL. Designing Ventilated Packaging for the Fresh Produce Cold Chain. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Development of grape pomace extract based edible coating for shelf life extension of pomegranate arils. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Shelf life of fresh in-hull pistachio in perforated polyethylene packaging. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Teng X, Zhang M, Mujumdar AS. Potential application of laser technology in food processing. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Kowalska H, Marzec A, Domian E, Kowalska J, Ciurzyńska A, Galus S. Edible coatings as osmotic dehydration pretreatment in nutrient-enhanced fruit or vegetable snacks development: A review. Compr Rev Food Sci Food Saf 2021; 20:5641-5674. [PMID: 34698434 DOI: 10.1111/1541-4337.12837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
Edible coatings (ECs) are thin layers applied on food to protect it and improve quality. They are made from bio-based materials such as polysaccharides, proteins, lipids, or their composites. The incorporation of functional agents, such as bioactive compounds, vitamins, or antimicrobials into the EC, has been investigated to control the shelf life of many food products from horticulture ones to processed food. Osmotic dehydration (OD) as a mild technology may also positively impact the availability of innovative fruit snacks and consequently influence consumer health. Combination of the EC with the OD aims to remove water through the semipermeable membrane while limiting the transfer of solutes from the dehydrated tissue and in the opposite direction from the osmotic solution to the food. The development trend of the snack market is expanding, especially with health-promoting properties. Consumers pay increasing attention to quality of food and its beneficial effects on health. This review attempts to provide the advancement of recent studies on the application of the EC before the OD of different fresh or fresh-cut fruit and vegetables. A fundamental theory related to the methodology of creating the EC, their composition, and the influence on the physicochemical properties of products that are osmo-dehydrated to a medium water content or additionally dried to a low water content have been described. Efforts have been exerted to introduce hydrocolloids used in the production of the EC, including new sources of biopolymers such as agricultural waste and by-products. The perspectives of using ECs in the technology of producing pro-healthy snacks are emphasized.
Collapse
Affiliation(s)
- Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
33
|
Innovative hybrid strategy for efficient production of high-quality freeze-dried instant noodles: Combination of laser with leavening agent. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Yuan S, Zuo J, Li X, Fan X, Li X, Wang Q, Zheng S. Micro-perforated packaging delays leaf yellowing and maintains flavor of postharvest pak choi (Brassica rapa subsp. chinensis) following low-temperature storage. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Qu Z, Zhou S, Li P, Liu C, Yuan B, Zhang S, Liu A. Natural products and skeletal muscle health. J Nutr Biochem 2021; 93:108619. [DOI: 10.1016/j.jnutbio.2021.108619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022]
|
36
|
Leila A, Nafiseh Z, Samira N, Saeed P, Mohammad G, Hajar A. Evaluation of the shelf life of minimally processed lettuce packed in modified atmosphere packaging treated with calcium lactate and heat shock, cysteine and ascorbic acid and sodium hypochlorite. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00991-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Wang D, Liu Y, Sun J, Sun Z, Liu F, Du L, Wang D. Fabrication and Characterization of Gelatin/Zein Nanofiber Films Loading Perillaldehyde for the Preservation of Chilled Chicken. Foods 2021; 10:foods10061277. [PMID: 34205088 PMCID: PMC8229453 DOI: 10.3390/foods10061277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
Perillaldehyde is a natural antibacterial agent extracted from perilla essential oil. In our methodology, five antibacterial nanofiber packaging films are prepared by loading different concentrations of perillaldehyde (P) into gelatin/zein (G/Z) polymers. Morphology observations show that the G/Z/P film had a good uniform microstructure and nano-diameter as the weight ratio of 5:1:0.02 (G/Z/P). Fourier transform infrared spectroscopy, and X-ray indicate that these three ingredients had good compatibility and strong interaction via hydrogen bonding. Water contact angle results show that the G/Z/P films gradually change from hydrophilic to hydrophobic with the increase of perillaldehyde. Thermal analysis indicates that the G/Z/P (5:1:0.02) film has good thermal stability. Antibacterial and storage analysis indicates that G/Z/P (5:1:0.02) film is effective to inactivate Staphylococcus aureus and Salmonella enteritidis, and obviously reduces the increasing rate of total bacteria counts and volatile basic nitrogen of chicken breasts. This study indicates that the G/Z/P (5:1:0.02) is a kind of potential antibacterial food packaging film.
Collapse
Affiliation(s)
- Debao Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.W.); (Y.L.); (J.S.); (Z.S.); (D.W.)
| | - Yini Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.W.); (Y.L.); (J.S.); (Z.S.); (D.W.)
| | - Jinyue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.W.); (Y.L.); (J.S.); (Z.S.); (D.W.)
| | - Zhilan Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.W.); (Y.L.); (J.S.); (Z.S.); (D.W.)
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.W.); (Y.L.); (J.S.); (Z.S.); (D.W.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (F.L.); (L.D.)
| | - Lihui Du
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Correspondence: (F.L.); (L.D.)
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (D.W.); (Y.L.); (J.S.); (Z.S.); (D.W.)
| |
Collapse
|
38
|
Cheng Y, Dong H, Wu Y, Xiao K. Preparation of an Amidated Graphene Oxide/Sulfonated Poly Ether Ether Ketone (AGO/SPEEK) Modified Atmosphere Packaging for the Storage of Cherry Tomatoes. Foods 2021; 10:foods10030552. [PMID: 33800032 PMCID: PMC8001178 DOI: 10.3390/foods10030552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The shelf life of cherry tomatoes is short so that new and efficient preservation techniques or procedures are required to reduce postharvest losses. This study focused on the development of a sulfonated poly ether ether ketone (SPEEK) film incorporated with amidated graphene oxide (AGO), for the storage of cherry tomatoes in modified atmosphere packaging. The mechanical properties, gas permeability, and moisture permeability were subsequently tested. The evolution of attributes related to shelf life, such as gas composition, physicochemical properties, and sensory properties were also monitored during storage trials. AGO, as an inorganic filler, increases the thermal stability and mechanical properties of SPEEK-based films, while it reduces the water absorption, swelling rate, and moisture permeability. Importantly, all the AGO/SPEEK films exhibited enhanced gas permeability and selective permeability of CO2/O2 relative to the SPEEK film. Moreover, 0.9% (w/w) AGO/SPEEK film showed an enhanced permeability coefficient of CO2, corresponding to an increase of 50.7%. It could further improve the selective coefficient of CO2/O2 to 67.1%. The results of preservation at 8 °C revealed that: 0.9% (w/w) AGO/SPEEK film was significantly effective at maintaining the quality and extending the shelf life of cherry tomatoes from 15 to 30 days, thereby suggesting the potential for applying AGO-incorporated SPEEK films for food packaging materials.
Collapse
Affiliation(s)
- Yao Cheng
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Hao Dong
- School of Food Science and Technology, Zhongkai University of Agriculture and Engineering, 24, Dongsha Street, Fangzhi Rd., Haizhu District, Guangzhou 510225, China;
| | - Yuanyue Wu
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
| | - Kaijun Xiao
- School of Food Science and Technology, South China University of Technology, 381, Wushan Rd., Tianhe District, Guangzhou 510641, China; (Y.C.); (Y.W.)
- Correspondence: ; Tel.: +86-020-87113848
| |
Collapse
|
39
|
Yan F, Zhao Q, Gao H, Wang X, Xu K, Wang Y, Han F, Liu Q, Shi Y. Exploring the mechanism of (-)-Epicatechin on premature ovarian insufficiency based on network pharmacology and experimental evaluation. Biosci Rep 2021; 41:BSR20203955. [PMID: 33521822 PMCID: PMC7881164 DOI: 10.1042/bsr20203955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
METHODS Relevant potential targets for EC were obtained based on Traditional Chinese Medicine System Pharmacology Database (TCMSP), a bioinformatics analysis tool for molecular mechanism of Traditional Chinese Medicine (BATMAN-TCM) and STITCH databases. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were utilized to screen the known POI-related targets, while Cytoscape software was used for network construction and visualization. Then, the Gene Ontology (GO) and pathway enrichment analysis were carried out by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Furthermore, KGN cells were performed to validate the predicted results in oxidative stress (OS) model, and antioxidant effect was examined. RESULTS A total of 70 potential common targets for EC in the treatment of POI were obtained through network pharmacology. Metabolic process, response to stimulus and antioxidant activity occupied a leading position of Gene Ontology (GO) enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that PI3K/protein kinase B (AKT), TNF, estrogen, VEGF and MAPK signaling pathways were significantly enriched. In addition, cell experiments showed that EC exhibited antioxidant effects in an H2O2-mediated OS model in ovarian granulosa cells by regulating the expression of PI3K/AKT/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and multiple downstream antioxidant enzymes. CONCLUSION EC could regulate multiple signaling pathways and several biological processes (BPs). EC had the ability to down-regulate elevated OS level through the PI3K/AKT/Nrf2 signaling pathway and represented a potential novel treatment for POI.
Collapse
Affiliation(s)
- Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huanpeng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yishu Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
40
|
Elamine Y, Lyoussi B, Miguel MG, Anjos O, Estevinho L, Alaiz M, Girón-Calle J, Martín J, Vioque J. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food Chem 2020; 339:128098. [PMID: 33152883 DOI: 10.1016/j.foodchem.2020.128098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023]
Abstract
Zantaz honey is a monofloral variety produced from the melliferous plant Bupleurum spinosum (Apiaceae), a shrub that grows mainly in the Atlas Moroccan Mountains. Determination of the polyphenol composition revealed that methyl syringate accounts for more than 50% of total polyphenols, which represents a very useful parameter for the characterization of this monofloral honey. Epicatechin, syringic acid and catechin are also abundant. Caco-2 and THP-1 cells were used for determination of antioxidant and antiproliferative activities in Zantaz honey, respectively. All six commercial samples that were used for these studies exhibited antioxidant activity and inhibited cell proliferation. Interestingly, these activities had a positive correlation mainly with the content in methyl syringate and gallic acid. The recognition of health promoting activities in Zantaz honey should increase its commercial value, which would have a positive economic impact on the poor rural communities of Morocco where it is produced.
Collapse
Affiliation(s)
- Youssef Elamine
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco; Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain.
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco
| | - Maria G Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Faculdade de Ciências e Tecnologia, Edificio 8, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ofélia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal; Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Letícia Estevinho
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-252 Bragança, Portugal
| | - Manuel Alaiz
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain
| | - Julio Girón-Calle
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain
| | - Jesús Martín
- Fundación MEDINA, Avda del Conocimiento 34, 18016-Granada, Spain
| | - Javier Vioque
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013-Sevilla, Spain
| |
Collapse
|