1
|
Xiao Y, Wang Y, Zhang M, Zhang Y, Ju Z, Wang J, Zhang Y, Yang C, Wang X, Jiang Q, Gao Y, Wei X, Liu W, Gao Y, Hu P, Huang J. Tankyrase inhibitor IWR-1 modulates HIPPO and Transforming Growth Factor β signaling in primed bovine embryonic stem cells cultured on mouse embryonic fibroblasts. Theriogenology 2025; 233:100-111. [PMID: 39613494 DOI: 10.1016/j.theriogenology.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF). Notably, bESC exhibited significant differentiation after one month of IWR-1 withdrawal, without a clear bias toward any specific germ layer. IWR-1 effectively inhibited TNKS2 activity in bESC, whereas it suppressed TNKS1 protein level in growth-arrested MEF. Early differentiation upon IWR-1 removal induced more substantial transcriptomic changes in MEF than in bESC. Furthermore, cell communication analysis predicted that IWR-1 influenced several paracrine and autocrine signals within the culture system. We also observed that IWR-1 repressed protein abundance of the HIPPO pathway components including TEAD4 and YAP1 in bESC and decreased transcription of HIPPO targeted genes CYR61. Protein analysis in growth-arrested MEF suggested that IWR-1 modulated MEF function by impeding TGF-β1 activation and activin A secretion which mitigated nuclear localization of SMAD2/3 in the bESC. This study underscores the role of tankyrase inhibitors in ESC self-renewal by modulating key signaling pathways and orchestrating cell-cell interactions, which may be meaningful in understanding the delicate signaling control of pluripotency in livestock and improving the culture system.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yujie Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Minghao Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhang
- Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
2
|
Chen R, Ren S, Li S, Zhou H, Jia X, Han D, Gao Z. Synthetic biology for the food industry: advances and challenges. Crit Rev Biotechnol 2025; 45:23-47. [PMID: 38797660 DOI: 10.1080/07388551.2024.2340530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 05/29/2024]
Abstract
As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.
Collapse
Affiliation(s)
- Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuexia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
3
|
Pogoda A, Pan Y, Röntgen M, Hasse S. Plasma-Functionalized Liquids for Decontamination of Viable Tissues: A Comparative Approach. Int J Mol Sci 2024; 25:10791. [PMID: 39409120 PMCID: PMC11477098 DOI: 10.3390/ijms251910791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Plasma-functionalized liquids (PFLs) are rich in chemical species, such as ozone, hydrogen peroxide, singlet oxygen, hydroxyl radical and nitrogen oxides, commonly referred to as reactive oxygen and nitrogen species (RONS). Therefore, manifold applications are being investigated for their use in medicine, agriculture, and the environment. Depending on the goal, a suitable plasma source concept for the generation of PFLs has to be determined because the plasma generation setup determines the composition of reactive species. This study investigates three PFL-generating plasma sources-two spark discharges and a flow dielectric barrier discharge (DBD) system-for their efficacy in eliminating microbial contaminants from tissue samples aiming to replace antibiotics in the rinsing process. The final goal is to use these tissues as a cell source for cell-based meat production in bioreactors and thereby completely avoid antibiotics. Initially, a physicochemical characterization was conducted to better understand the decontamination capabilities of PFLs and their potential impact on tissue viability. The results indicate that the flow DBD system demonstrated the highest antimicrobial efficacy due to its elevated reactive species output and the possibility of direct treatment of tissues while tissue integrity remained. Achieving a balance between effective large-scale decontamination and the biocompatibility of PFLs remains a critical challenge.
Collapse
Affiliation(s)
- Alexander Pogoda
- Department of Plasma Life Science, Leibniz Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.P.); (Y.P.)
| | - Yuanyuan Pan
- Department of Plasma Life Science, Leibniz Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.P.); (Y.P.)
| | - Monika Röntgen
- Working Group Cell Biology of Muscle Growth, Research Institute of Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Sybille Hasse
- Department of Plasma Life Science, Leibniz Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.P.); (Y.P.)
| |
Collapse
|
4
|
Fasciano S, Wheba A, Ddamulira C, Wang S. Recent advances in scaffolding biomaterials for cultivated meat. BIOMATERIALS ADVANCES 2024; 162:213897. [PMID: 38810509 DOI: 10.1016/j.bioadv.2024.213897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
The emergence of cultivated meat provides a sustainable and ethical alternative to traditional animal agriculture, highlighting its increasing importance in the food industry. Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation, and orientation. While there's extensive research on scaffolding biomaterials, applying them to cultivated meat production poses distinct challenges, with each material offering its own set of advantages and disadvantages. This review summarizes the most recent scaffolding biomaterials used in the last five years for cell-cultured meat, detailing their respective advantages and disadvantages. We suggest future research directions and provide recommendations for scaffolds that support scalable, cost-effective, and safe high-quality meat production. Additionally, we highlight commercial challenges cultivated meat faces, encompassing bioreactor design, cell culture mediums, and regulatory and food safety issues. In summary, this review provides a comprehensive guide and valuable insights for researchers and companies in the field of cultivated meat production.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, 06516, USA
| | - Anas Wheba
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Christopher Ddamulira
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA.
| |
Collapse
|
5
|
Nurul Alam AMM, Kim CJ, Kim SH, Kumari S, Lee EY, Hwang YH, Joo ST. Scaffolding fundamentals and recent advances in sustainable scaffolding techniques for cultured meat development. Food Res Int 2024; 189:114549. [PMID: 38876607 DOI: 10.1016/j.foodres.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
In cultured meat (CM) production, Scaffolding plays an important role by aiding cell adhesion, growth, differentiation, and alignment. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering and triggered the interest of researchers to implement scaffolding techniques. A wide array of research efforts is ongoing in scaffolding technologies for achieving the real meat structure on the principality of biomedical research and to replace serum free CM production. Scaffolds made of animal-derived biomaterials are found efficient in replicating the extracellular matrix (ECM), thus focus should be paid to utilize animal byproducts for this purpose. Proper identification and utilization of plant-derived scaffolding biomaterial could be helpful to add diversified options in addition to animal derived sources and reduce in cost of CM production through scaffolds. Furthermore, techniques like electrospinning, modified electrospinning and 3D bioprinting should be focused on to create 3D porous scaffolds to mimic the ECM of the muscle tissue and form real meat-like structures. This review discusses recent advances in cutting edge scaffolding techniques and edible biomaterials related to structured CM production.
Collapse
Affiliation(s)
- A M M Nurul Alam
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Chan-Jin Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - So-Hee Kim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Swati Kumari
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Eun-Yeong Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52852, Republic of Korea; Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Republic of Korea.
| |
Collapse
|
6
|
Niu R, Xin Q, Xu E, Yao S, Chen M, Liu D. Nanostarch-Stimulated Cell Adhesion in 3D Bioprinted Hydrogel Scaffolds for Cell Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38680043 DOI: 10.1021/acsami.4c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Three-dimensional (3D) bioprinting has great potential in the applications of tissue engineering, including cell culturing meat, because of its versatility and bioimitability. However, existing bio-inks used as edible scaffold materials lack high biocompatibility and mechanical strength to enable cell growth inside. Here, we added starch nanoparticles (SNPs) in a gelatin/sodium alginate (Gel/SA) hydrogel to enhance printing and supporting properties and created a microenvironment for adherent proliferation of piscine satellite cells (PSCs). We demonstrated the biocompatibility of SNPs for cells, with increasing 20.8% cell viability and 36.1% adhesion rate after 5 days of incubation. Transcriptomics analysis showed the mechanisms underlying the effects of SNPs on the adherent behavior of myoblasts. The 1% SNP group had a low gel point and viscosity for shaping with PSCs infusion and had a high cell number and myotube fusion index after cultivation. Furthermore, the formation of 3D muscle tissue with thicker myofibers was shown in the SNP-Gel/SA hydrogel by immunological staining.
Collapse
Affiliation(s)
- Ruihao Niu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qipu Xin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minxuan Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| |
Collapse
|
7
|
Singh A, Singh SK, Kumar M, Sarma DK, Singh S, Verma V. Establishment of Capra hircus somatic cells and induction of pluripotent stem-like cells. In Vitro Cell Dev Biol Anim 2024; 60:3-8. [PMID: 38153638 DOI: 10.1007/s11626-023-00840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Capra hircus (goat) induced pluripotent stem cells (giPSCs) harbor enormous scientific value and contribute to cellular agriculture, animal cloning, etc. Conventional approaches to giPSC generation suffer from complexity and low preparation efficiency. In the present study, we introduced the episomal vectors carrying the human pluripotent genes in goat somatic cells to generate the giPSC-like colonies. Initially, a simple non-enzymatic method was used to isolate the goat dermal fibroblast cells and, further, a cell line was established. Later, goat fibroblast cells were transfected with commercially available episomal vectors carrying the human pluripotent genes and successfully generated the iPSC-like colonies which exhibited the expression of goat endogenous pluripotent genes and positive staining with alkaline phosphatase. Moreover, giPS-like cells formed embryoid bodies (EBs)-like aggregates and weekly expressed the marker genes of two germ layers. Reprogramming of goat fibroblast using episomal vectors carrying human pluripotent genes could lead to the development of an efficient and time- and cost-effective approach to giPSC generation.
Collapse
Affiliation(s)
- Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Suraj Kumar Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India.
| |
Collapse
|
8
|
Singh A, Singh SK, Kumar V, Gupta J, Kumar M, Sarma DK, Singh S, Kumawat M, Verma V. Derivation and Characterization of Novel Cytocompatible Decellularized Tissue Scaffold for Myoblast Growth and Differentiation. Cells 2023; 13:41. [PMID: 38201245 PMCID: PMC10778107 DOI: 10.3390/cells13010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The selection of an appropriate scaffold is imperative for the successful development of alternative animal protein in the form of cultured meat or lab-grown meat. Decellularized tissues have been suggested as a potential scaffold for cultured meat production owing to their capacity to support an optimal environment and niche conducive to cell proliferation and growth. This approach facilitates the systematic development of 3D tissues in the laboratory. Decellularized scaffold biomaterials have characteristics of high biocompatibility, biodegradation, and various bioactivities, which could potentially address the limitations associated with synthetic bio-scaffold materials. The present study involved the derivation and characterization of a decellularized scaffold from mushroom tissue following subsequent assessment of the scaffold's capacity to support myogenic differentiation. Mushroom sections were soaked in nuclease and detergent solution for 4 days. Furthermore, decellularization was confirmed by histology and DAPI staining, which showed the removal of cellular components and nuclei. Myoblast cells were seeded onto decellularized tissue, which exhibited excellent cytocompatibility and promoted myogenic growth and differentiation. The study's findings can serve as a foreground for the generation of an edible and natural scaffold for producing a safe and disease-free source of alternative animal protein, potentially reducing the burden on the health sector caused by conventional animal protein production and consumption.
Collapse
Affiliation(s)
- Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Suraj Kumar Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vinod Kumar
- National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | - Jalaj Gupta
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Manoj Kumar
- ICMR—National Institute for Research in Environmental Health, Bhopal 462030, India (D.K.S.); (S.S.)
| | - Devojit Kumar Sarma
- ICMR—National Institute for Research in Environmental Health, Bhopal 462030, India (D.K.S.); (S.S.)
| | - Samradhi Singh
- ICMR—National Institute for Research in Environmental Health, Bhopal 462030, India (D.K.S.); (S.S.)
| | - Manoj Kumawat
- ICMR—National Institute for Research in Environmental Health, Bhopal 462030, India (D.K.S.); (S.S.)
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
9
|
Zhu G, Gao D, Li L, Yao Y, Wang Y, Zhi M, Zhang J, Chen X, Zhu Q, Gao J, Chen T, Zhang X, Wang T, Cao S, Ma A, Feng X, Han J. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nat Commun 2023; 14:8163. [PMID: 38071210 PMCID: PMC10710416 DOI: 10.1038/s41467-023-44001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.
Collapse
Affiliation(s)
- Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tong Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Singh A, Kumar V, Singh SK, Gupta J, Kumar M, Sarma DK, Verma V. Recent advances in bioengineered scaffold for in vitro meat production. Cell Tissue Res 2023; 391:235-247. [PMID: 36526810 PMCID: PMC9758038 DOI: 10.1007/s00441-022-03718-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In vitro meat production via stem cell technology and tissue engineering provides hypothetically elevated resource efficiency which involves the differentiation of muscle cells from pluripotent stem cells. By applying the tissue engineering technique, muscle cells are cultivated and grown onto a scaffold, resulting in the development of muscle tissue. The studies related to in vitro meat production are advancing with a seamless pace, and scientists are trying to develop various approaches to mimic the natural meat. The formulation and fabrication of biodegradable and cost-effective edible scaffold is the key to the successful development of downstream culture and meat production. Non-mammalian biopolymers such as gelatin and alginate or plant-derived proteins namely soy protein and decellularized leaves have been suggested as potential scaffold materials for in vitro meat production. Thus, this article is aimed to furnish recent updates on bioengineered scaffolds, covering their formulation, fabrication, features, and the mode of utilization.
Collapse
Affiliation(s)
- Anshuman Singh
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Vinod Kumar
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Suraj Kumar Singh
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Jalaj Gupta
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- grid.263138.d0000 0000 9346 7267Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 (U.P.) India
| |
Collapse
|
11
|
Kumar P, Sharma N, Sharma S, Mehta N, Verma AK, Chemmalar S, Sazili AQ. In-vitro meat: a promising solution for sustainability of meat sector. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:693-724. [PMID: 34447949 PMCID: PMC8367411 DOI: 10.5187/jast.2021.e85] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022]
Abstract
The in-vitro meat is a novel concept in food biotechnology comprising field of tissue engineering and cellular agriculture. It involves production of edible biomass by in-vitro culture of stem cells harvested from the muscle of live animals by self-organizing or scaffolding methodology. It is considered as efficient, environmental friendly, better ensuring public safety and nutritional security, as well as ethical way of producing meat. Source of stem cells, media ingredients, supply of large size bioreactors, skilled manpower, sanitary requirements, production of products with similar sensory and textural attributes as of conventional meat, consumer acceptance, and proper set up of regulatory framework are challenges faced in commercialization and consumer acceptance of in-vitro meat. To realize any perceivable change in various socio-economic and environmental spheres, the technology should be commercialized and should be cost-effective as conventional meat and widely accepted among consumers. The new challenges of increasing demand of meat with the increasing population could be fulfill by the establishment of in-vitro meat production at large scale and its popularization. The adoption of in-vitro meat production at an industrial scale will lead to self-sufficiency in the developed world.
Collapse
Affiliation(s)
- Pavan Kumar
- Department of Livestock Products
Technology, College of Veterinary Science, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana Punjab 141004,
India
- Institute of Tropical Agriculture and Food
Security, Universiti Putra Malaysia, Serdang 43400,
Malaysia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty
of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University
of Agricultural Sciences & Technology of Jammu, R.S.
Pura, UT of Jammu and Kashmir 181102, India
| | - Shubham Sharma
- Department of Livestock Production and
Management, College of Veterinary Sciences & Animal Husbandry, Nanaji
Deshmukh Veterinary Science University, Mhow, Madhya Pradesh
453446, India
| | - Nitin Mehta
- Department of Livestock Products
Technology, College of Veterinary Science, Guru Angad Dev Veterinary and
Animal Sciences University, Ludhiana Punjab 141004,
India
| | - Akhilesh Kumar Verma
- Department of Livestock Products
Technology, College of Veterinary and Animal Science, Sardar Vallabhbhai
Patel University of Agriculture and Technology, Meerut, Uttar
Pradesh 250110, India
| | - S Chemmalar
- Natural Medicines and Product Research
Laboratory, Institute of Bioscience, Universiti Putra
Malaysia, Serdang 43400, Malaysia
| | - Awis Qurni Sazili
- Institute of Tropical Agriculture and Food
Security, Universiti Putra Malaysia, Serdang 43400,
Malaysia
| |
Collapse
|