1
|
Von Mühlen M, Mörschbächer A, Beltrami LVR, Zattera AJ, Borsoi C, Catto AL. Evaluating the properties of starch/chitosan films with the incorporation of various nanoclays for use in food packaging. Int J Biol Macromol 2025; 298:140054. [PMID: 39828182 DOI: 10.1016/j.ijbiomac.2025.140054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This study evaluates the properties of starch/chitosan films (SCF) produced via the casting method, incorporating 40 % (w/w) plasticizers (glycerol and sorbitol) and various concentrations (0, 3, 5, and 10 % (w/w)) of nanoclays (Cloisite 20A, Cloisite 30B, and K-10). The effects of each nanofiller on the films were thoroughly investigated. Films containing nanoclays exhibited reduced water solubility and enhanced thermal stability compared to films without nanofillers. A higher nanoclay concentration (10 % (w/w)) led to a reduction in the solubility of the starch/chitosan films, with a decrease of approximately 15 % relative to the SCF sample. Incorporating the three types of nanoclays improved tensile strength at break, particularly in samples with 3 % and 5 % (w/w) nanoclay content, achieving an approximate 68 % increase in tensile strength at break compared to the SCF sample. Atomic Force Microscopy (AFM) analysis revealed that increasing nanofiller content significantly heightened surface roughness. Films incorporating Cloisite 30B demonstrated lower surface roughness than those with Cloisite 20A and K-10 nanoclays, especially at concentrations of 3 % and 5 % (w/w), with a reduction of approximately 40 %. X-ray diffraction (XRD) analysis indicated superior interaction in films containing Cloisite 20A and 30B, while films with 10 % (w/w) K-10 exhibited a diffraction peak at 8.88°, suggesting inadequate incorporation. These findings align with the AFM analysis results for this film. Consequently, the integration of nanoclays improves the properties of starch/chitosan films, with formulations utilizing 20A and 30B nanoclays at 3 % and 5 % (w/w) showing the most promising potential for future applications in food packaging.
Collapse
Affiliation(s)
- Milena Von Mühlen
- Exact Sciences and Engineering, University of Vale do Taquari -Univates, Lajeado, RS, Brazil.
| | - Augusto Mörschbächer
- Exact Sciences and Engineering, University of Vale do Taquari -Univates, Lajeado, RS, Brazil.
| | - Lilian Vanessa Rossa Beltrami
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul - UCS, Caxias do Sul, RS, Brazil.
| | - Ademir José Zattera
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul - UCS, Caxias do Sul, RS, Brazil.
| | - Cleide Borsoi
- Exact Sciences and Engineering, University of Vale do Taquari -Univates, Lajeado, RS, Brazil.
| | - André Luis Catto
- Exact Sciences and Engineering, University of Vale do Taquari -Univates, Lajeado, RS, Brazil.
| |
Collapse
|
2
|
Yan Y, Fang J, Zhang X, Ji X, Shi M, Niu B. Insight into formation and structure of wheat starch-lauric acid complexes by extrusion: Effect of plasma-activated water. Food Chem 2025; 469:142640. [PMID: 39733567 DOI: 10.1016/j.foodchem.2024.142640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
The objective of this study is to examine how plasma-activated water (PAW) affects the formation of complexes between wheat starch (WS) and lauric acid (LA) during extrusion. The findings from various analysis, including complexing index, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and differential scanning calorimetry, revealed that PAW promoted the formation of WS-LA complexes during extrusion, resulting in a better long-range and short-range ordered structure, as well as higher gelatinization enthalpy. Consequently, PAW led to lower solubility, swelling power, gel property, and rapidly digestible starch content but higher resistant starch content. Notably, the promotional impact of PAW60 (distilled water underwent plasma treatment for 60 s) was greater than PAW120 (distilled water underwent plasma treatment for 120 s) and PAW180 (distilled water underwent plasma treatment for 180 s). This study provides an efficacious technique to enhance the formation of starch complexes, being of great value in starch-based functional foods.
Collapse
Affiliation(s)
- Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou, 450001, PR China.
| | - Jiao Fang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xinxin Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Bin Niu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, PR China.
| |
Collapse
|
3
|
Chen L, Sun Y, Wang X, Xia S, Zhao J. Adsorption behavior of commercial biodegradable plastics towards pollutants during the biodegradation process: Taking starch-based biodegradable microplastics, oxytetracycline and Cu (II) as examples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125538. [PMID: 39689834 DOI: 10.1016/j.envpol.2024.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
With the widespread use of biodegradable plastic bags, their potential environmental risks need further assessment. This study focused on commercial starch-based blended biodegradable microplastics (70% Poly(butylene adipate-co-terephthalate) (PBAT)+5% Poly(lactic acid) (PLA)+20% Thermoplastic starch (TPS), PPT MPs) to investigate their adsorption behaviors towards Cu(II) and oxytetracycline (OTC) under microbial colonization and biodegradation. Post-biodegradation, the hydroxyl (-OH) peak intensity of starch in PPT significantly decreased, while carbonyl (C=O) peaks of PBAT and PLA broadened, with O/C ratio rising from 14.65% to 35.82%. The starch's degradation in PPT altered its thermal properties. Microbial colonization on PPT (B-PPT) enhanced Cu(II) and OTC adsorption, while biodegradation (D-PPT) reduced their adsorption. Reduced surface carbonyl and hydroxyl groups, alongside increased crystallinity, diminished D-PPT's Cu(II) adsorption. While OTC adsorption, driven by hydrophobic partitioning, was less affected by biodegradation. In the binary pollutant system, the Cu(II) and OTC adsorption of D-PPT increased by 20.27% and 8.63 times, respectively; B-PPT showed decreased adsorption of both. Coexisting organic matter and pH significantly affected PPT's adsorption behavior by altering Cu(II) and OTC speciation, and influencing adsorption competition, hydrogen bonding and bridging effects. This study is the first to explore biodegradation impacts of commercial starch-based microplastics on typical heavy metals and antibiotics adsorption, providing important theoretical insights for understanding their environmental risks.
Collapse
Affiliation(s)
- Liuyu Chen
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ying Sun
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
4
|
Dong Y, Li Z, Kong H, Ban X, Gu Z, Zhang H, Hong Y, Cheng L, Li C. Correlation analysis of starch molecular structure and film properties via rearrangements of glycosidic linkages by 1,4-α-glucan branching enzyme. Carbohydr Polym 2025; 348:122908. [PMID: 39567168 DOI: 10.1016/j.carbpol.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024]
Abstract
The functional characteristics of starch films are significantly influenced by the amylose content and the distribution of the amylopectin chain length. This work used 1,4-α-glucan branching enzyme to molecularly reconstruct corn, pea, and cassava starch in order to examine the association. Films made of both natural and enzyme-modified starch were produced using the casting method. The study investigated the variations in starch films properties and explored the relationship between starch molecular structure and film qualities by correlation analysis. The results showed a significant positive connection (r = 0.954) between the tensile strength and amylose content, as well as a positive correlation (r = 0.939) between the A chains and the elongation at break. The average chain length (r = 0.932) and amylose content (r = 0.902) showed a positive correlation with the degradation temperature, whereas the amylose content (r = -0.946) showed an adverse correlation with the transparency. The B3 chain (r = 0.851) and the average chain length (r = 0.839) both exhibited a positive connection with its contact angle. As a result, our study thoroughly assesses how starch structure affects the characteristics of starch films and offers a fundamental modification pathway for the development of new application areas.
Collapse
Affiliation(s)
- Yilin Dong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Haocun Kong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Achenef HA, Emire SA, Kassahun SK, Kim H. Enset starch-based biocomposite film reinforced with Ethiopian bentonite clay: Improved mechanical and barrier properties. Int J Biol Macromol 2025; 287:138499. [PMID: 39647721 DOI: 10.1016/j.ijbiomac.2024.138499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Improper disposal of traditional plastics leads to the generation of microplastics, resulting in severe pollution of land and oceans and posing a threat to human health and marine ecosystems. Hence, adopting eco-friendly bioplastics, particularly in food packaging, is essential. In this study, Enset starch-based biocomposite films, reinforced with Ethiopian bentonite clay at various ratios (0, 2.5, 5, 7.5 and 10 % w/w) were prepared using solvent casting method. The effect of bentonite clay on biocomposite films on structural, physicochemical, and morphological properties were analyzed. Characterization tests confirmed the even distribution of bentonite, strengthening of bonds, and enhancement of the biocomposite film properties. The biocomposite film with 5 wt% bentonite clay incorporation into enset starch exhibits optimal performance; maximum strength (increased by 132 %), less water solubility (reduction in 33 %), reduction in water vapor permeability (decreased by 42 %), and better compatibility in the morphologies attributed by the intercalated silicate layer. This study highlights the effectiveness of bentonite clay in enhancing enset starch biocomposite properties, offering a promising eco-friendly solution for biodegradable food packaging and promoting sustainable resource utilization.
Collapse
Affiliation(s)
- Habtamu Asmare Achenef
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea; School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa 1000, Ethiopia
| | - Shimelis Admassu Emire
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa 1000, Ethiopia
| | - Shimelis Kebede Kassahun
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa 1000, Ethiopia
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
6
|
Pawle P, Pandey S, Kumar A, Agarwal A, Tripathi AD, Saeed M, Rab SO, Mahato DK, Kumar P, Kamle M. Valorization of raw papaya ( Carica papaya) and citrus peels for development of antimicrobial and biodegradable edible film. Food Chem X 2025; 25:102129. [PMID: 39867219 PMCID: PMC11761308 DOI: 10.1016/j.fochx.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025] Open
Abstract
Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. The present study examined that starch can be effectively used as raw material to develop biodegradable, edible films. In this regard, Raw papaya and Citrus Peel were chosen to make biodegradable plastic film blended with corn starch. Raw papaya powder was combined with citrus peel powder for the development of film in treatments of T1, T2, T3, T4 and T5. RPP and CPP blend with Corn starch (CS) to maximize the film-forming properties and characteristics. The films were subjected to various parameter analysis like thickness, optical properties and barrier properties. As per the results, T3 was an optimized film, as it had minimum thickness (0.26 ± 0.01), high tensile strength (5.79 ± 0.12), elongation at break of 11.92 ± 0.03, High transparency (1.42 ± 0.06), and high degradation temperature. From the results, it is inferred that the prepared films are ideally suitable for food packaging and their production on a larger scale can considerably cut down the plastic wastage.
Collapse
Affiliation(s)
- Prathamesh Pawle
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Surabhi Pandey
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, 208002, India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Aparna Agarwal
- Department of Food Technology, Lady Irwin College, University of Delhi, New Delhi, 110001, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura 'a, Abha, P.O. Box 960,Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Madhu Kamle
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| |
Collapse
|
7
|
Gong Y, Xiao S, Yao Z, Deng H, Chen X, Yang T. Factors and modification techniques enhancing starch gel structure and their applications in foods:A review. Food Chem X 2024; 24:102045. [PMID: 39691538 PMCID: PMC11650135 DOI: 10.1016/j.fochx.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
The formation of starch gel structure results from the gelatinization and retrogradation of starch in aqueous solutions, which plays a crucial role in determining the quality and functional properties of starchy foods. The gelation ability of many native starches is limited and their structure is weak, which restricts their application. Therefore, how to enhance the gel structure of starch is of great significance to food science and industry. In this paper, the mechanism of starch gel formation was reviewed, and the research progress of starch composition, retrogradation conditions, food composition and modification methods were reviewed. Meanwhile, the applications of enhanced starch gel structures in food quality, nutrition, packaging, and 3D printing were discussed. This review provides valuable references for researchers and producers to develop high-quality and nutritious starch-based foods and further expand the applications of starches.
Collapse
Affiliation(s)
- Yongqiang Gong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuzhi Xiao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zihan Yao
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongjie Deng
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuan Chen
- School of Architecture and Art, Central South University, Changsha 410004, China
| | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Garavito J, Peña-Venegas CP, Castellanos DA. Production of Starch-Based Flexible Food Packaging in Developing Countries: Analysis of the Processes, Challenges, and Requirements. Foods 2024; 13:4096. [PMID: 39767042 PMCID: PMC11675729 DOI: 10.3390/foods13244096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Biodegradable packaging offers an affordable and sustainable solution to global pollution, particularly in developing countries with limited recycling infrastructure. Starch is well suited to develop biodegradable packages for foods due to its wide availability and simple, low-tech production process. Although the development of starch-based packaging is well documented, most studies focus on the laboratory stages of formulation and plasticization, leaving gaps in understanding key phases such as raw material conditioning, industrial-scale molding, post-production processes, and storage. This work evaluates the value chain of starch-based packaging in developing countries. It addresses the challenges, equipment, and process conditions at each stage, highlighting the critical role of moisture resistance in the final product's functionality. A particular focus is placed on replacing single-use plastic packaging, which dominates food industries in regions with agricultural economies and rich biodiversity. A comprehensive analysis of starch-based packaging production, with a detailed understanding of each stage and the overall process, should contribute to the development of more sustainable and scalable solutions, particularly for the replacement of single-use packages, helping to protect vulnerable biodiverse regions from the growing impact of plastic waste.
Collapse
Affiliation(s)
- Johanna Garavito
- Food Packaging and Shelf Life Laboratory, Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Carrera 30 Número 45-03, Edificio 500A, Bogotá 111321, Colombia;
- Instituto Amazónico de Investigaciones Científicas—SINCHI, Avenida Vásquez Cobo Calle 15/16, Leticia 910001, Colombia;
| | - Clara P. Peña-Venegas
- Instituto Amazónico de Investigaciones Científicas—SINCHI, Avenida Vásquez Cobo Calle 15/16, Leticia 910001, Colombia;
| | - Diego A. Castellanos
- Food Packaging and Shelf Life Laboratory, Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Carrera 30 Número 45-03, Edificio 500A, Bogotá 111321, Colombia;
| |
Collapse
|
9
|
Kong P, Rosnan SM, Enomae T. Carboxymethyl cellulose-chitosan edible films for food packaging: A review of recent advances. Carbohydr Polym 2024; 346:122612. [PMID: 39245494 DOI: 10.1016/j.carbpol.2024.122612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
Polysaccharide-based edible films have been widely developed as food packaging materials in response to the rising environmental concerns caused by the extensive use of plastic packaging. In recent years, the integration of carboxymethyl cellulose (CMC) and chitosan (CS) for a binary edible film has received considerable interest because this binary edible film can retain the advantages of both constituents (e.g., the great oxygen barrier ability of CMC and moderate antimicrobial activity of CS) while mitigating their respective disadvantages (e.g., the low water resistance of CMC and poor mechanical strength of CS). This review aims to present the latest advancements in CMC-CS edible films. The preparation methods and properties of CMC-CS edible films are comprehensively introduced. Potential additives and technologies utilized to enhance the properties are discussed. The applications of CMC-CS edible films on food products are summarized. Literature shows that the current preparation methods for CMC-CS edible film are solvent-casting (main) and thermo-mechanical methods. The CMC-CS binary films have superior properties compared to films made from a single constituent. Moreover, some properties, such as physical strength, antibacterial ability, and antioxidant activity, can be greatly enhanced via the incorporation of some bioactive substances (e.g. essential oils and nanomaterials). To date, several applications of CMC-CS edible films in vegetables, fruits, dry foods, dairy products, and meats have been studied. Overall, CMC-CS edible films are highly promising as food packaging materials.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Shalida Mohd Rosnan
- College of Creative Arts, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Toshiharu Enomae
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
10
|
Xu W, Yan S, Xu X, Wang B, Abd El-Aty AM. Investigation of film Physical properties under various starch thermal treatments with emphasis on Retrogradation effects. Food Chem 2024; 458:140269. [PMID: 38964101 DOI: 10.1016/j.foodchem.2024.140269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
This study investigated the changes in the physical properties of cornstarch-based films as they were retrogradely aged at different temperatures. Using a casting method, the films were fabricated, and their effects on the mechanical properties, thermal stability, barrier properties, and essential properties were analyzed. With prolonged aging and retrogradation periods, reductions in film thickness, solubility, water content, and water vapor permeability of 5.35%, 9.92%, 29.61%, and 20.94%, respectively, were observed. In addition, the surface roughness decreased by 44.46% for Rq (root-mean-square roughness) and 45.61% for Ra (arithmetic average roughness), while the elongation at break decreased by 72.64%. Conversely, the tensile strength, maximum degradation rate, and maximum degradation temperature increased by 116.98%, 99.5%, and 3.21%, respectively. These results provide a fundamental understanding of the changes that occur in the properties of cornstarch-based films during aging and retrogradation.
Collapse
Affiliation(s)
- Wei Xu
- Shandong Agricultural University, Taian, 271018, China
| | - Shouxin Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xin Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bin Wang
- Shandong Agricultural University, Taian, 271018, China; Weihai Baihe Biology Technological Co., Ltd. Weihai, 264200, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
11
|
Zhao Y, Dang X, Du H, Wang D, Zhang J, Liu R, Ge Z, Sun Z, Zhong Q. Understanding the Impact of Extrusion Treatment on Cereals: Insights from Alterations in Starch Physicochemical Properties and In Vitro Digestion Kinetics. Animals (Basel) 2024; 14:3144. [PMID: 39518868 PMCID: PMC11544977 DOI: 10.3390/ani14213144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, three samples were randomly selected from corn, wheat, and broken rice before and after extrusion for electron microscope scanning, Fourier transform infrared spectral analysis, and in vitro digestion to investigate the impact of extrusion on physicochemical characteristics and starch digestion kinetics of cereals. The cereals used for extrusion were sourced identically before and after the process, with each analysis conducted in triplicate. The results showed that the extrusion compromised the physical structure of cereal, resulting in loose structure arrangement, and the ratio of Fourier transform infrared spectral absorbance at wavelength 1047 cm-1 and 1022 cm-1, which characterized the short-range order of starch, was significantly reduced (p < 0.05). In addition, the proportion of rapidly digestible starch (RDS), the velocity parameter k of digestive kinetics and the predicted glycemic index of cereals were significantly increased by extrusion (p < 0.05). Digestibility kinetics showed a total increase of 10.7%, 7.3%, and 5.4% for cereals, along with a sharp rise in digestion rate within the first 15 minutes. The findings revealed that the compromising of starch's structural integrity and the increase in proportion of RDS not only enhanced overall starch digestibility, but also significantly accelerated its digestion, particularly during the initial 15 min of intestinal digestion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zewei Sun
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (X.D.); (H.D.); (D.W.); (J.Z.); (R.L.); (Z.G.)
| | - Qingzhen Zhong
- Jilin Province Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (X.D.); (H.D.); (D.W.); (J.Z.); (R.L.); (Z.G.)
| |
Collapse
|
12
|
Lyu JS, Han J. Fabrication of bio-inspired carbon nanodot-corn starch nanocomposite films via extrusion process for sustainable active food packaging applications. Carbohydr Polym 2024; 343:122502. [PMID: 39174146 DOI: 10.1016/j.carbpol.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
In this study, carbon nanodot (CD)-corn starch (CS) nanocomposite films are fabricated for active food packaging applications. First, ginkgo biloba leaves (GBL) were used as a biomass-derived carbon precursor, and a facile hydrothermal method was employed to synthesise environmentally sustainable CDs. The GBL-derived carbon nanodots (gCDs) were then characterised and incorporated into a CS matrix via an extrusion process to fabricate the CS/gCD nanocomposite film. The effects of various gCD concentrations on the physicochemical and functional properties of CS/gCD composite films were systematically investigated. The gCD exhibited non-cytotoxic effect against human colorectal adenocarcinoma cell line (Caco-2) cells when exposed up to 1000 μg/mL. The incorporation of gCDs into the CS film improved its mechanical properties, with the toughness of the CS/gCD2% nanocomposite film exhibiting 198 % superiority compared to the CS film. In addition, the oxygen barrier and UV-blocking properties were significantly improved. Furthermore, the CS/gCD nanocomposite film significantly extended the shelf life of ω-3 oils owing to the superior antioxidant activity of the gCDs, exhibiting only 9 meq/kg during the 15-day storage period. Our results suggest that the developed CS/gCD active composite film is a promising candidate for environmentally sustainable solutions to enhance food shelf life and reduce food waste.
Collapse
Affiliation(s)
- Ji Sou Lyu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
13
|
Zhang W, Zhang T, Zhong Y, Zhang Y, Wang L, Zhu F, Wang X, Zhou L, Zhou X. Dynamic borate ester bond reinforced hydroxyethyl cellulose/corn starch crosslinked film for simple recycling and regeneration. Int J Biol Macromol 2024; 279:135231. [PMID: 39218188 DOI: 10.1016/j.ijbiomac.2024.135231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Endowing biodegradable plastics with easy recyclability can reduce competition with food resources and further enhance their environmental friendliness. In this work, 4-carboxyphenylboronic acid was grafted onto the side chains of hydroxyethyl cellulose and compounded with inexpensive cornstarch. Upon the introduction of tannic acid, stable and reversible borate ester bond rapidly formed, yielding composite biodegradable plastic films with outstanding mechanical properties and facile recyclability. The formation of a dynamic cross-linked network mitigates the aggregation of gelatinized starch molecules, enhancing the flexibility and durability of the crosslinked film. Testing revealed that while maintaining high tensile strength, the elongation at break of the crosslinked film increased by 952.86 %. The static water contact angle was improved from 32.74° to 78.82°, with a change of <5° within 1 min, demonstrating enhanced water resistance. Excellent antioxidant and thermal stability were also characterized, the crosslinked film can be easily dissolved by heating in water at pH = 6.5 and reshaped in water at pH = 7.2. After five times of regeneration, the tensile strength loss was as low as 5.68 %. This eco-friendly and efficient recycling process is promising during green chemistry.
Collapse
Affiliation(s)
- Wenshuo Zhang
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China; Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China.
| | - Yuye Zhong
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yinhui Zhang
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Laiguo Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Feng Zhu
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Xie Wang
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Le Zhou
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| | - Xuehua Zhou
- College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246133, China
| |
Collapse
|
14
|
Morales-Becerril A, Aranda-Lara L, Isaac-Olive K, Ramírez-Villalva A, Ocampo-García B, Morales-Avila E. An Overview of Film-Forming Emulsions for Dermal and Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:259. [PMID: 39487372 DOI: 10.1208/s12249-024-02942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024] Open
Abstract
Drug delivery through the skin is a widely used therapeutic method for the treatment of local dermatologic conditions. Dermal and transdermal methods of drug delivery offer numerous advantages, but some of the most important aspects of drug absorption through the skin need to be considered. Film-forming systems (FFS) represent a new mode of sustained drug delivery that can be used to replace traditional topical formulations such as creams, ointments, pastes, or patches. They are available in various forms, including solutions, gels, and emulsions, and can be categorised as film-forming gels and film-forming emulsions. Film-forming emulsions (FFE) are designed as oil-in-water (O/W) emulsions that form a film with oil droplets encapsulated in a dry polymer matrix, thus maintaining their dispersed nature. They offer several advantages, including improved solubility, bioavailability and chemical stability of lipophilic drugs. In addition, they could improve the penetration and diffusion of drugs through the skin and enhance their absorption at the target site due to the nature of the components used in the formulation. The aim of this review is to provide an up-to-date compilation of the technologies used in film-forming emulsions to support their development and availability on the market as well as the development of new pharmaceutical forms.
Collapse
Affiliation(s)
- Aideé Morales-Becerril
- Facultad de Química, Universidad Autónoma del Estado de México, 50120, Toluca, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Keila Isaac-Olive
- Facultad de Medicina, Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Alejandra Ramírez-Villalva
- Escuela Profesional en Química Farmacéutica Biológica-INIES, Universidad de Ixtlahuaca, CUI. Ixtlahuaca, San Pedro, 50740, Estado de México, México
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, 52750, Ocoyoacac, Estado de México, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
15
|
Acevedo-Puello V, Gómez-Contreras P, Ortega-Toro R. Starch-based films affected by the addition of collagen from Prochilodus magdalenae residues and HPMC: Application in Andean blackberry (Rubus glaucus Benth) coatings. Biopolymers 2024; 115:e23601. [PMID: 38779866 DOI: 10.1002/bip.23601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Starch-based films offer the advantages of biodegradability, edibility, barrier properties, flexibility, and adaptability. This study compared the physicochemical properties of starch-based films by adding raw fish collagen and hydroxypropylmethylcellulose (HPMC). The tensile properties were evaluated, and the interaction with water was analyzed. Barrier properties, such as water vapor and oxygen permeability, were examined, and optical properties, such as gloss and good internal transmittance, were evaluated. The films were evaluated as coatings on Andean blackberries (Rubus glaucus Benth) for 2 weeks at 85% RH and 25°C. The results showed that the inclusion of collagen caused a reduction in the tensile strength and elastic modulus of the films. Also, the formulation with the highest collagen concentration (F7) exhibited the lowest weight loss and water vapor permeability, also it had the highest collagen concentration and showed the highest reduction in Xw and WAC, with values of 0.048 and 0.65 g water/g dry film, respectively. According to analyzing the optical properties, F1 presented the highest bright-ness and transmittance values, with 18GU and 82 nm values, respectively. In general, the films and coatings are alternatives to traditional packaging materials to prolong the shelf life of these fruits.
Collapse
Affiliation(s)
- Vanessa Acevedo-Puello
- Universidad de Cartagena-Facultad de ingeniería-Departamento de ingeniería de alimentos-Grupo de Investigación Food Packaging and Shelf Life (FP&SL)-Cartagena de Indias D.T. y C. 130001, Cartagena, Colombia
| | - Paula Gómez-Contreras
- Universidad de Cartagena-Facultad de ingeniería-Departamento de ingeniería de alimentos-Grupo de Investigación Food Packaging and Shelf Life (FP&SL)-Cartagena de Indias D.T. y C. 130001, Cartagena, Colombia
| | - Rodrigo Ortega-Toro
- Universidad de Cartagena-Facultad de ingeniería-Departamento de ingeniería de alimentos-Grupo de Investigación Food Packaging and Shelf Life (FP&SL)-Cartagena de Indias D.T. y C. 130001, Cartagena, Colombia
| |
Collapse
|
16
|
Singh GP, Bangar SP, Aayush K, Yang T, Verma R, Kuca K, Kumar D, Phimolsiripol Y. Value addition of mango kernel for development and characterization of starch with starch nanoparticles for packaging applications. Int J Biol Macromol 2024; 274:133185. [PMID: 38880462 DOI: 10.1016/j.ijbiomac.2024.133185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present research was conducted to explore the potential of mango kernel starch from the Chaunsa variety to develop starch and starch nanoparticles (SNPs) based films. The investigation included starch isolation from mango kernel followed by the preparation of SNPs by acid hydrolysis and a thorough examination of various physicochemical properties for film formation. The properties of SNPs were found to be distinctly different from those of native starch. SNPs exhibited an aggregated form with an irregular surface, whereas native starch had an oval and elongated shape with a smooth surface. X-ray diffraction (XRD) analysis confirmed that the starch type in SNPs was of the A-type. Additionally, the pasting properties of SNPs were minimal due to the acid hydrolysis process. SNP-based composite film was developed with (5 %) SNP concentration added. This successful incorporation of SNPs enhanced biodegradability, with complete degradation occurring within three weeks. Moreover, the composite films displayed increased burst strength, measuring 1303.51 ± 73.7 g, and lower water vapor transmission rates (WVTR) at (7.40 ± 0.50) × 10-3 g per square meter per second and reduced water solubility at 35.32 ± 3.0 %. This development represents a significant advancement in the field of eco-friendly packaging materials.
Collapse
Affiliation(s)
- Gurvendra Pal Singh
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson 29634, USA; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Krishna Aayush
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rachna Verma
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Dinesh Kumar
- Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India.
| | | |
Collapse
|
17
|
Wang L, Li D, Ye L, Zhi C, Zhang T, Miao M. Development of a self-reinforced starch-derived film with biocompatibility and mechanical properties. Food Chem 2024; 447:138974. [PMID: 38489880 DOI: 10.1016/j.foodchem.2024.138974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The scraps produced while processing packaging materials will cause a waste of resources. In this study, starch-based self-reinforced film (SSRF) using thermoplastic starch (TPS, 45 wt%) and polypropylene (PP, 53 wt%) was developed. The effect of extrusion times (1-4 times) on the film structure and performance was explored. The results show as the number of extrusions increases, the color of SSRF deepens from gray-white to brown, and the crystallinity increases. The mechanical properties of the four types of SSRF first increase and then decrease. The 2-SSRF has the best performance, with tensile strength of 13.23 MPa, elongation at break of 61.35%, Young's modulus of 1128.99 MPa, and flexural strength of 33.19 MPa. Proper extrusion improves the compatibility of TPS and PP. However, repeated extrusion will cause PP degradation and TPS carbonization, reducing interfacial interaction. This study developed new starch-based self-reinforced film and provided theoretical guidance for reusing packaging material scraps.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dexiang Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lei Ye
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, PR China
| | - Chaohui Zhi
- Jiangsu Longjun Environmental Protection Industrial Development Co., Ltd., Changzhou, Jiangsu 213000, PR China
| | - Tao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ming Miao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
18
|
Li X, Zhang X, Lv J, Zhang X, Li Y, Han X, Zhang W. Development of starch-based films reinforced with curcumin-loaded nanocomplexes: Characterization and application in the preservation of blueberries. Int J Biol Macromol 2024; 264:130464. [PMID: 38423417 DOI: 10.1016/j.ijbiomac.2024.130464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
In current study, curcumin-loaded bioactive nanocomplexes (Cur NCs) (2 %, 5 %, 8 %, and 11 %) were used to prepare corn starch (CS)-based composite films (CS-Cur NCs). Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy revealed that Cur NCs were uniformly dispersed in the polymer matrix via physical interaction. Moreover, the mechanical, gas barrier, hydrophobicity, optical, and thermal properties and the antioxidant activity of composite films were potentially improved with the addition of Cur NCs. Subsequently, CS-based film with 11 % Cur NCs exhibited high antioxidant activity (the scavenging rates of DPPH and ABTS are 50.07 % ± 0.82 % and 65.26 % ± 1.60 %, respectively) and was used for packaging blueberries. Compared with the control, the CS-Cur NCs packaging treatment effectively improved the appearance and nutrition of blueberries, and maintained the high activity of several antioxidant enzymes. Furthermore, CS-Cur NCs packaging treatment significantly improved the ascorbic acid (AsA) and glutathione (GSH) levels, thus regulating the AsA-GSH cycle system and suppressing the accumulation of reactive oxygen species (ROS). In summary, the CS-Cur NCs packaging could effectively conserve the postharvest quality of blueberries by improving antioxidant enzyme activity and suppressing excessive accumulation of ROS, which contributes to the development of bioactive packaging and provides novel insights into the preservation of blueberries. This work demonstrates that the development of active packaging is promising to absorb the oxidative radicals from food, and protect the food from inherent and external factors, thus enhancing the quality, security, and shelf-life of the food during storage.
Collapse
Affiliation(s)
- Xiquan Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jiale Lv
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiaofeng Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Agricultural and Forestry Science Research Institute of the Greater Khingan Mountains, Jiagedaqi, Heilongjiang 165002, PR China.
| |
Collapse
|
19
|
Dong M, Bilotti E, Zhang H, Papageorgiou DG. Multifunctional Ti 3C 2T x MXene-reinforced thermoplastic starch nanocomposites for sustainable packaging solutions. Int J Biol Macromol 2024; 265:130520. [PMID: 38553390 DOI: 10.1016/j.ijbiomac.2024.130520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Starch-derived films exhibit significant potential for packaging applications owing to their low cost, biodegradable characteristics, and natural abundance. Nonetheless, there is a demand to enhance their mechanical properties and moisture resistance to broaden their use. In this study, high performing sorbitol-plasticized starch/Ti3C2Tx MXene nanocomposites, reinforced with ultra-low filler contents, were fabricated for the first time in literature. The MXene nanoplatelets were well-dispersed within the starch matrix while there was a tendency for the fillers to align in-plane, as revealed by polarized Raman spectroscopy. The produced nanocomposite films demonstrate remarkable effectiveness in blocking UV light, offering an additional valuable attribute in food packaging. The Young's modulus and tensile strength of starch films containing 0.75 wt% MXene increased from 439.9 and 11.0 MPa to 764.3 and 20.8 MPa, respectively. The introduction of 1 wt% MXene nanoplatelets reduced the water vapour permeability of starch films from 2.78 × 10-7 to 1.80 × 10-7 g/m h Pa due to the creation of highly tortuous paths for water molecules. Micromechanical theories were also implemented to understand further the reinforcing mechanisms in the biobased nanocomposites. The produced starch nanocomposites not only capitalize on the biodegradable and renewable nature of starch but also harness the unique properties of nanomaterials, paving the way for sustainable and high-performance packaging solutions that align with both consumer and environmental demands.
Collapse
Affiliation(s)
- Ming Dong
- School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Emiliano Bilotti
- Department of Aeronautics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Han Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Dimitrios G Papageorgiou
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
20
|
Liu Y, Wei Z, Wang J, Wu Y, Xu X, Wang B, Abd El-Aty AM. Effects of different proportions of erythritol and mannitol on the physicochemical properties of corn starch films prepared via the flow elongation method. Food Chem 2024; 437:137899. [PMID: 37931454 DOI: 10.1016/j.foodchem.2023.137899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
In this study, corn films based on corn starch were fabricated through the casting method, and various plasticizers (namely, erythritol and d-mannitol) were incorporated. The study delved into the gelatinization and physicochemical characteristics of these corn starch-based films. Additionally, the impact of different ratios of plasticizers on reductive gelatinization was assessed using RVA analysis. The investigation also encompassed the effects of varying plasticizer ratios on starch granule expansion, amylose dissolution, and amylopectin melting. Interestingly, as the proportion of d-mannitol increased, there were gradual increases in film thickness, water content, and water contact angle, alongside decreases in water vapor permeability, crystallinity, and water solubility of the corn starch-based films. In essence, this research provides a fundamental basis for potential industrial applications of corn starch-based films.
Collapse
Affiliation(s)
- Yongchang Liu
- College of Bioengineering, Jingchu University of Technology, Jingmen Hubei 448000, China
| | - Zusheng Wei
- Guangxi Subtropical Crops Research Institute, Nanning Guangxi, 530001, China
| | - Jiarui Wang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yinliang Wu
- Sanshu Biotechnology Co., Ltd, Nantong Jiangsu 226000, China
| | - Xin Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Wang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
21
|
Ma C, Tao H, Tan C, Gao S, Wu Z, Guo L, Cui B, Yuan F, Zou F, Liu P, Lu L. Effects of polyols with different hydroxyl numbers on the structure and properties of starch straws. Carbohydr Polym 2023; 321:121297. [PMID: 37739530 DOI: 10.1016/j.carbpol.2023.121297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/24/2023]
Abstract
To study the relationship between the number of hydroxyl groups of polyols and the plasticizing effect, the effects of different polyols including ethylene glycol, glycerol, erythritol, xylitol and sorbitol on the structure and properties of corn starch straws were analyzed and compared. The results showed that the addition of plasticizer significantly improved the performance of starch straws, which greatly improved the mechanical properties, water absorption rate (WAR) and thermal stability. However, there was no linear relationship between the plasticizing effect on starch straws and the number of hydroxyl groups in plasticizers. Fourier transform infrared (FTIR) results showed that erythritol formed the strongest intermolecular interaction with starch. Starch straws with erythritol (S-ERY) had the highest bending force (Fb = 25.78 N) and the lowest WAR. Starch straws with glycerol (S-GLY) showed the lowest relative crystallinity (RC = 12.87 %) and the highest temperature of the maximum degradation (Tdmax = 302.1 °C). In addition, after storing for 180 days, S-GLY showed higher modulus of elasticity in bending (Eb = 4.26 N/cm) and a uniform surface.
Collapse
Affiliation(s)
- Chenyu Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shijun Gao
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China
| | - Zehua Wu
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
22
|
Pérez Gutiérrez CL, Cottone F, Pagano C, Di Michele A, Puglia D, Luzi F, Dominici F, Sinisi R, Ricci M, Viseras Iborra CA, Perioli L. The Optimization of Pressure-Assisted Microsyringe (PAM) 3D Printing Parameters for the Development of Sustainable Starch-Based Patches. Polymers (Basel) 2023; 15:3792. [PMID: 37765648 PMCID: PMC10537393 DOI: 10.3390/polym15183792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to develop sustainable patches for wound application, using the biopolymer starch, created using a low-cost 3D printing PAM device. The composition of a starch gel was optimized for PAM extrusion: corn starch 10% w/w, β-glucan water suspension (filler, 1% w/w), glycerol (plasticizer, 29% w/w), and water 60% w/w. The most suitable 3D printing parameters were optimized as well (nozzle size 0.8 mm, layer height 0.2 mm, infill 100%, volumetric flow rate 3.02 mm3/s, and print speed 15 mm/s). The suitable conditions for post-printing drying were set at 37 °C for 24 h. The obtained patch was homogenous but with low mechanical resistance. To solve this problem, the starch gel was extruded over an alginate support, which, after drying, becomes an integral part of the product, constituting the backing layer of the final formulation. This approach significantly improved the physicochemical and post-printing properties of the final bilayer patch, showing suitable mechanical properties such as elastic modulus (3.80 ± 0.82 MPa), strength (0.92 ± 0.08 MPa), and deformation at break (50 ± 1%). The obtained results suggest the possibility of low-cost production of patches for wound treatment by additive manufacturing technology.
Collapse
Affiliation(s)
- Carmen Laura Pérez Gutiérrez
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Francesco Cottone
- Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy;
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | | | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (D.P.); (F.D.)
| | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), 60131 Ancona, Italy;
| | - Franco Dominici
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (D.P.); (F.D.)
| | - Rossella Sinisi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | - César Antonio Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| |
Collapse
|
23
|
Preparation, characteristics, and soil-biodegradable analysis of corn starch/nanofibrillated cellulose (CS/NFC) and corn starch/nanofibrillated lignocellulose (CS/NFLC) films. Carbohydr Polym 2023; 309:120699. [PMID: 36906356 DOI: 10.1016/j.carbpol.2023.120699] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
The objective of this study was to produce high-performance and biodegradable starch nanocomposites through film casting by using corn starch/nanofibrillated cellulose (CS/NFC) and corn starch/nanofibrillated lignocellulose (CS/NFLC). NFC and NFLC were obtained by super grinding process and added to fibrogenic solutions (1, 3, and 5 g/100 g of starch). The addition of NFC and NFLC from 1 to 5 % was verified to be influential in enhancing mechanical properties (tensile, burst, and tear index) and reducing WVTR, air permeability, and essential properties in food packaging materials. But, in comparison to control samples, the addition of NFC and NFLC from 1 to 5 % decreased the opacity, transparency, and tear index of films. In acidic solutions, produced films were more soluble than in alkaline or water solutions. The soil-biodegradability analysis showed that after 30 days of exposure to soil, the control film lost 79.5 % of its weight. The weight loss of all films was >81 % after 40 days. The results of this study may contribute to expanding the industrial applications of both NFC and NFLC by laying a basis for preparing high-performance CS/NFC or CS/NFLC.
Collapse
|
24
|
Thongphang C, Namphonsane A, Thanawan S, Chia CH, Wongsagonsup R, Smith SM, Amornsakchai T. Toward a Circular Bioeconomy: Development of Pineapple Stem Starch Composite as a Plastic-Sheet Substitute for Single-Use Applications. Polymers (Basel) 2023; 15:polym15102388. [PMID: 37242963 DOI: 10.3390/polym15102388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Plastic waste poses a significant challenge for the environment, particularly smaller plastic products that are often difficult to recycle or collect. In this study, we developed a fully biodegradable composite material from pineapple field waste that is suitable for small-sized plastic products that are difficult to recycle, such as bread clips. We utilized starch from waste pineapple stems, which is high in amylose content, as the matrix, and added glycerol and calcium carbonate as the plasticizer and filler, respectively, to improve the material's moldability and hardness. We varied the amounts of glycerol (20-50% by weight) and calcium carbonate (0-30 wt.%) to produce composite samples with a wide range of mechanical properties. The tensile moduli were in the range of 45-1100 MPa, with tensile strengths of 2-17 MPa and an elongation at break of 10-50%. The resulting materials exhibited good water resistance and had lower water absorption (~30-60%) than other types of starch-based materials. Soil burial tests showed that the material completely disintegrated into particles smaller than 1 mm within 14 days. We also created a bread clip prototype to test the material's ability to hold a filled bag tightly. The obtained results demonstrate the potential of using pineapple stem starch as a sustainable alternative to petroleum-based and biobased synthetic materials in small-sized plastic products while promoting a circular bioeconomy.
Collapse
Affiliation(s)
- Chanaporn Thongphang
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Atitiya Namphonsane
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Sombat Thanawan
- Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Rungtiwa Wongsagonsup
- Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Siwaporn Meejoo Smith
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
25
|
Namphonsane A, Suwannachat P, Chia CH, Wongsagonsup R, Smith SM, Amornsakchai T. Toward a Circular Bioeconomy: Exploring Pineapple Stem Starch Film as a Plastic Substitute in Single Use Applications. MEMBRANES 2023; 13:membranes13050458. [PMID: 37233519 DOI: 10.3390/membranes13050458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
In this study, biodegradable starch film was developed from pineapple stem waste as a substitute for non-biodegradable petroleum-based films for single-use applications where strength is not too demanding. High amylose starch from a pineapple stem was used as the matrix. Glycerol and citric acid were used as additives to adjust the ductility of the material. Glycerol content was fixed at 25% while that of citric acid varied from 0 to 15% by weight of starch. Films with a wide range of mechanical properties can be prepared. As more citric acid is added, the film becomes softer and weaker, and has greater elongation at the break. Properties range from a strength of about 21.5 MPa and 2.9% elongation to a strength of about 6.8 MPa and 35.7% elongation. An X-ray diffraction study showed that the films were semi-crystalline. The films were also found to be water-resistant and can be heat-sealed. An example of a single-use package was demonstrated. A soil burial test confirmed that the material was biodegradable and completely disintegrated into sizes smaller than 1 mm within one month.
Collapse
Affiliation(s)
- Atitiya Namphonsane
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | - Phattarakarn Suwannachat
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Rungtiwa Wongsagonsup
- Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand
| | - Siwaporn Meejoo Smith
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
| | - Taweechai Amornsakchai
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand
| |
Collapse
|
26
|
Wu H, Wang J, Li T, Lei Y, Peng L, Chang J, Li S, Yuan X, Zhou M, Zhang Z. Effects of cinnamon essential oil-loaded Pickering emulsion on the structure, properties and application of chayote tuber starch-based composite films. Int J Biol Macromol 2023; 240:124444. [PMID: 37062380 DOI: 10.1016/j.ijbiomac.2023.124444] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
The use of non-conventional starch sources to develop biodegradable and bioactive starch-based films have attracted increasing attention recently. In this study, a nonconventional chayote tuber starch (CTS) was functionalized by zein-pectin nanoparticle-stabilized cinnamon essential oil (CEO) Pickering emulsion (ZPCO) to develop a novel bioactive composite films for food packaging application. Results demonstrated that antibacterial ZPCO featuring long-term stability was successfully obtained. FTIR and SEM analyses suggested that ZPCO have favorable dispersibility and compatibility with CTS matrix. With ZPCO increasing, the transmittance, tensile strength, and moisture content of composite films decreased, whereas their elongation at break, antimicrobial and antioxidant activities increased. ZPCO added at an appropriate level (2 %) can improve water-resistance of the films and reduce water vapor permeability. More importantly, ZPCO can achieve a slower sustained-release of CEO from composite films into food simulants. Furthermore, the composite film containing 2 % ZPCO is safe and nontoxic as proved by cell cytotoxicity test, and it can significantly prolong the shelf life of ground beef by showing the lowest total volatile base nitrogen and best acceptable sensory characteristic. Overall, the incorporation of ZPCO into CTS films offers a great potential application as a bioactive material in the food packing.
Collapse
Affiliation(s)
- Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China; College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China.
| | - Jie Wang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Ting Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Yuxiao Lei
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Lu Peng
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Jiaqi Chang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| |
Collapse
|
27
|
Effect of green coffee oil as a natural active emulsifying agent on the properties of corn starch-based films. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Optimization of Radio Frequency Explosion Puffing Parameters for the Production of Nutritious Snacks. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
29
|
Li K, Jia J, Wu N, Xu Q. Recent advances in the construction of biocomposites based on fungal mycelia. Front Bioeng Biotechnol 2022; 10:1067869. [PMID: 36466339 PMCID: PMC9713584 DOI: 10.3389/fbioe.2022.1067869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 04/12/2024] Open
Abstract
In recent years, environmental problems have become increasingly serious, significantly effecting the ecosystem and human health. To deal with the problem of environmental pollution in an eco-conscious way, sustainable composite biomaterials are being produced. Mycelium-based composite biomaterials combine biological systems with substrates such as nanomaterials or agricultural and industrial wastes, which can complement each other's advantages or turn waste into a useful resource. Such materials can solve practical wastewater problems as well as replace plastic products, thus reducing plastic pollution and contributing to the green transition of the environment. In this review, we summarized the recent findings of studies on these materials, indicating future research directions.
Collapse
Affiliation(s)
| | | | | | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
30
|
Ma M, Xu Z, Wu H, Li K, Sun G, He J, Sui Z, Corke H. Removal of starch granule-associated surface and channel lipids alters the properties of sodium trimetaphosphate crosslinked maize starch. Int J Biol Macromol 2022; 219:473-481. [PMID: 35917853 DOI: 10.1016/j.ijbiomac.2022.07.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Starch granule-associated surface and channel lipids (SGALs) were effectively removed from waxy maize starch (WMS) and normal maize starch (NMS), then the starches were crosslinked by different levels of sodium trimetaphosphate (STMP) (0.25 %, 0.5 %, 1 % and 2 %). The effective removal of SGALs and successful crosslinking, were evidenced by the disappearance of surface-fluorescence and channel-fluorescence of Pro-Q Diamond-stained granules, and the increased phosphorus content respectively. STMP crosslinking increased peak and final viscosity for WMS and NMS. Crosslinking at high STMP levels (0.5 %, 1 % and 2 %) transformed the starch pastes from thixotropic to anti-thixotropic. STMP crosslinking significantly decreased the tan δ values of maize starches, enhancing the elastic structure of the gel. Crosslinked maize starches without SGALs had lower breakdown than crosslinked starches at same STMP level, indicating higher tightened crosslinked starch granules after SGALs removal. Removal of SGALs increased the anti-thixotropy of crosslinked starches, facilitating the reorientation of crosslinked amylopectin/amylose molecules during shearing. Removal of SGALs increased the tan δ values from frequency sweep of WMS and NMS during STMP crosslinking, indicating the presence of surface-lipids and channel-lipids could enhance the elastic gel network structure of crosslinked maize starch.
Collapse
Affiliation(s)
- Mengting Ma
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zekun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huaixiang Wu
- Baolingbao Biology Co., Ltd, Dezhou 253000, China
| | - Kewen Li
- Baolingbao Biology Co., Ltd, Dezhou 253000, China
| | - Guilian Sun
- Baolingbao Biology Co., Ltd, Dezhou 253000, China
| | - Jinxing He
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Zhongquan Sui
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
31
|
Four stages of multi-scale structural changes in rice starch during the entire high hydrostatic pressure treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Weng F, Li L, Wu Q. Preparation and Mechanisms of Compatible Composite from Water soluble starch and Polycaprolactone. STARCH-STARKE 2022. [DOI: 10.1002/star.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fangqing Weng
- Hubei Key Laboratory of Purification and Application of Plant Anti‐cancer Active Ingredients College of Chemistry and Life Sciences Hubei University of Education Wuhan 430205 China
| | - Lin Li
- Hubei Xiangyuan New Material Technology Co. Ltd. Hanchuan 431600 Hanchuan China
| | - Qiangxian Wu
- College of Chemistry Central China Normal University Wuhan 430079 China
| |
Collapse
|
33
|
Wang B, Yan S, Qiu L, Gao W, Kang X, Yu B, Liu P, Cui B, Abd El-Aty AM. Antimicrobial Activity, Microstructure, Mechanical, and Barrier Properties of Cassava Starch Composite Films Supplemented With Geranium Essential Oil. Front Nutr 2022; 9:882742. [PMID: 35634401 PMCID: PMC9132371 DOI: 10.3389/fnut.2022.882742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022] Open
Abstract
In this study, we prepared cassava starch-based films by the casting method. Afterwards, the effects of geranium essential oil (GEO) on the prepared films' physicochemical, morphology, and antibacterial properties were revealed. We found that the thickness and elongation at the break of cassava starch films increased with increasing GEO concentration (from 0.5, 1, and 2%). However, increasing GEO concentration decreased the water content, water vapor permeability, and tensile strength of the prepared films'. Further, the addition of GEO increased the surface roughness, opacity, and antibacterial properties of the prepared films. With the increase of GEO concentration, L* and a* of cassava starch film decreased, while b* and Δ E increased. This study provides a theory for cassava starch-based films as a biological packaging material.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shouxin Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Lizhong Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd., Zhucheng, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
34
|
Wang B, Xu X, Fang Y, Yan S, Cui B, Abd El-Aty AM. Effect of Different Ratios of Glycerol and Erythritol on Properties of Corn Starch-Based Films. Front Nutr 2022; 9:882682. [PMID: 35548578 PMCID: PMC9083458 DOI: 10.3389/fnut.2022.882682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The demand for biodegradable products has increased; hence, a suitable method for producing green composites is essential. This study prepared corn starch-based films using the solution casting method, and the physicochemical properties of the prepared films were investigated using a mixture of glycerol (GLY) and erythritol (ERY) at different ratios (4:0, 3:1, 2:2, 1:3, and 0:4) as plasticizing agents. The crystallinity, hydrophilicity, mechanical properties, oxygen and water vapor, surface roughness, and thermal stability of corn starch-based films were analyzed using small-angle X-ray diffraction, water contact angle, automatic tensile testing machine, oxygen permeability tester and water vapor permeability analyzer, atomic force microscope, and thermogravimetric analyzer. With the increase in GLY ratio, the thickness, water-solubility, water content, water vapor permeability, elongation at break, oxygen permeability and V-shaped crystallization of the corn starch-based films increased. The tensile strength and the thermal stability decreased with increasing the GLY ratio. We developed a new plasticizer using glycerol and erythritol to improve the properties of starch films and provided the basis for the industrial production of corn starch-based films.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Department of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Xin Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Youxin Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Department of Forestry College, Shandong Agricultural University, Taian, China
| | - Shouxin Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
35
|
Janik W, Nowotarski M, Shyntum DY, Banaś A, Krukiewicz K, Kudła S, Dudek G. Antibacterial and Biodegradable Polysaccharide-Based Films for Food Packaging Applications: Comparative Study. MATERIALS 2022; 15:ma15093236. [PMID: 35591570 PMCID: PMC9103775 DOI: 10.3390/ma15093236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022]
Abstract
One of the major objectives of food industry is to develop low-cost biodegradable food packaging films with optimal physicochemical properties, allowing for their large-scale production and providing a variety of applications. To meet the expectations of food industry, we have fabricated a series of solution-cast films based on common biodegradable polysaccharides (starch, chitosan and alginate) to be used in food packaging applications. Selected biopolymers were modified by the addition of glycerol and oxidized sucrose (starch), glycerol (chitosan), and glycerol and calcium chloride (alginate), as well as being used to form blends (starch/chitosan and starch/alginate, respectively). A chestnut extract was used to provide antibacterial properties to the preformed materials. The results of our studies showed that each modification reduced the hydrophilic nature of the polymers, making them more suitable for food packaging applications. In addition, all films exhibited much higher barrier properties to oxygen and carbon dioxide than commercially available films, such as polylactic acid, as well as exhibiting antimicrobial properties against model Gram-negative and Gram-positive bacteria (Escherichia coli and Staphylococcus epidermidis, respectively), as well as yeast (Candida albicans).
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network—The Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
- Department of Physical Chemistry and Technology of Polymers, PhD School, Silesian University of Technology, 2a Akademicka Str., 44-100 Gliwice, Poland
- Correspondence: ; Tel.: +48-77-487-31-87
| | - Michał Nowotarski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| | - Divine Yutefar Shyntum
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Angelika Banaś
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| | - Stanisław Kudła
- Łukasiewicz Research Network—The Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.N.); (A.B.); (K.K.); (G.D.)
| |
Collapse
|
36
|
Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chem 2022; 370:130992. [PMID: 34509946 DOI: 10.1016/j.foodchem.2021.130992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/15/2021] [Accepted: 08/29/2021] [Indexed: 11/24/2022]
Abstract
The effects of dielectric barrier discharge (DBD) plasma treatment on the physicochemical properties of potato starch and its films were studied. The results showed that the plasma species caused etching lead to small cracks and pores in potato starch particles and that oxidation, de-polymerization, and crosslinking were the main mechanisms underlying the effects of DBD plasma treatment. As the treatment time extended, starch hydrolysis, turbidity, syneresis, and gelatinization temperatures increased first and then decreased, whereas the solubility, swelling power, and water absorption significantly increased (P < 0.05). There was a decrease in the retrogradation tendency of the starch gels. The surfaces of the DBD plasma-modified potato starch-based films were relatively flat. After a 9-min treatment, the films exhibited the lowest water vapor permeability and highest tensile strength. In conclusion, the use of DBD plasma is a simple and green method to enhance the properties of potato starch and its film.
Collapse
|
37
|
Maturation Process, Nutritional Profile, Bioactivities and Utilisation in Food Products of Red Pitaya Fruits: A Review. Foods 2021; 10:foods10112862. [PMID: 34829143 PMCID: PMC8618204 DOI: 10.3390/foods10112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus, red pulp with pink peel), also known as dragon fruit, is a well-known species of pitaya fruit. Pitaya seeds and peels have been reported to exhibit higher concentrations of total polyphenols, beta-cyanins and amino acid than pulp, while anthocyanins (i.e., cyanidin 3-glucoside, delphinidin 3-glucoside and pelargonidin 3-glucoside) were only detected in the pulp extracts. Beta-cyanins, phenolics and flavonoids were found to increase gradually during fruit maturation and pigmentation appeared earlier in the pulp than peel. The phytochemicals were extracted and purified by various techniques and broadly used as natural, low-cost, and beneficial healthy compounds in foods, including bakery, wine, dairy, meat and confectionery products. These bioactive components also exhibit regulative influences on the human gut microbiota, glycaemic response, lipid accumulation, inflammation, growth of microbials and mutagenicity, but the mechanisms are yet to be understood. The objective of this study was to systematically summarise the effect of red pitaya’s maturation process on the nutritional profile and techno-functionality in a variety of food products. The findings of this review provide valuable suggestions for the red pitaya fruit processing industry, leading to novel formulations supported by molecular research.
Collapse
|