1
|
Karwatkar PA, Kulkarni SJ, Goswami AK. Bionanomaterials in Food Systems: Sources, Synthesis, Properties and Opportunities. BIONANOSCIENCE 2025; 15:5. [DOI: 10.1007/s12668-024-01660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 01/06/2025]
|
2
|
Shen H, Chen J, Tan KB. Ethyl cellulose matrixed poly(sulfur-co-sorbic acid) composite films: Regulation of properties and application for food preservation. Int J Biol Macromol 2024; 279:135183. [PMID: 39214227 DOI: 10.1016/j.ijbiomac.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Developing non-toxic and sustainable materials with versatile and diverse functions has always been a crucial issue in food preservation packaging. Recently, inverse vulcanization has emerged as a precise and eco-friendly solution, attributed to the versatility of resulting polysulfides. In this study, a polysulfide crosslinked with sorbic acid was prepared by inverse vulcanization, and further combined with bio-macromolecular ethyl cellulose to form composite films via a casting method. Thanks to the ethanol-solubility and good compatibility of ethyl cellulose towards the polysulfide, morphology of the films can be tailored by adjusting the component ratio, thereby achieving favorable water vapor permeability (2.20 × 10-12 gs-1m-1Pa-1), oxygen permeability (4.01 × 10-4 gs-1 m-2), elasticity modulus (~400 MPa), elongation at break (~16 %), etc. Some films demonstrate remarkable antibacterial activity against a broad spectrum of bacteria and fungi, demonstrating their effectiveness in food preservation. The browning and spoilage of preserved Agaricus bisporus were inhibited, with 79.2 % of the initial firmness retained and a 5.6 % weight loss recorded on the 6th day. For the 15-day preservation of grapes, minimal changes in appearance, firmness, or TSS were observed, underscoring the promising potential of this composite for food preservation applications.
Collapse
Affiliation(s)
- Hang Shen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China.
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Kok Bing Tan
- College of Chemical Engineering, Integrated Nanocatalysts Institute, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
3
|
Ke Z, Yu J, Liao L, Rao X. Application progress of rosin in food packaging: A review. Int J Biol Macromol 2024; 280:135900. [PMID: 39313057 DOI: 10.1016/j.ijbiomac.2024.135900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Foodborne illness caused by Gram bacteria is the most important food safety issue worldwide. Food packaging film is a very important means to extend the shelf life of food. It reduces microbial contamination and provides food safety assurance during the sales process. However, the food packaging material is derived from plastic. Most plastics are not only non-degradable but also harmful to human health. Biodegradable natural polymers are an ideal substitute, but their poor mechanical properties, hydrophilicity and weak antibacterial properties limit their applications. Rosin is an oily pine ester in the pine family, which is a natural renewable resource with a wide range of sources. It is widely used in various fields, such as surfactants, adhesives, drug loading, antibacterial, etc. However, there are only a few reports on the application of rosin in food packaging. It is worth noting that the unique hydrogenated phenanthrene ring structure of rosin can enhance the thermal stability, hydrophobicity and antibacterial properties of food packaging. More importantly, rosin has a wide range of sources, good biocompatibility, and can be degraded in nature. These advantages are conducive to the application of rosin in food packaging. However, previous reviews focused on resins, silicone rubbers and surfactants. In this review we will focus on the application of rosin in food packaging.
Collapse
Affiliation(s)
- Zhijun Ke
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Jinxuan Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China
| | - Lirong Liao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, Fujian Province 361021, China; College of Chemical Engineering, Huaqiao University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion (Huaqiao University), Xiamen, Fujian Province 361021, China.
| |
Collapse
|
4
|
Rajasekar N, Mohanraj KG, Mary Martin T, K MS. Advanced Dental Care: β-Chitosan Zinc Oxide Nanoparticles Targeting Cariogenic Microorganisms. Cureus 2024; 16:e66296. [PMID: 39238748 PMCID: PMC11376470 DOI: 10.7759/cureus.66296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Dental caries, primarily caused by cariogenic microorganisms, remains a significant global health concern. β-Chitosan, known for its biofilm-targeting properties, and zinc oxide (ZnO) nanoparticles (NPs), recognized for their potent antimicrobial effects, offer a promising approach for caries prevention and treatment. This study investigates the synthesis, characterization, and antimicrobial properties of β-Chitosan-derived ZnO NPs (β-Ch-ZnO-NPs) against these pathogens. Methodology β-Chitosan from fresh squid bones was isolated using demineralization and deproteinization methods. β-Ch-ZnO-NPs were synthesized and characterized using UV-vis spectroscopy and Fourier-transform infrared spectroscopy (FTIR) to confirm their size, shape, and stability. Antibacterial efficacy(agar well plate method)was assessed through standardized assays, demonstrating significant inhibition of cariogenic bacteria. The results were represented as mean± standard deviation. The Kruskal-Wallis test with post hoc analysis (Mann-Whitney U test) was conducted for statistical analysis. Molecular docking studies (blind docking method) were conducted to elucidate the interactions between β-Ch-ZnO-NPs and key bacterial enzymes involved in microbial genetic material synthesis, also known as dihydroorotate dehydrogenase (DHODH, PDB ID-2J0Y). Results The synthesized β-Ch-ZnO-NPs exhibited well-defined characteristics verified by UV-vis spectroscopy and FTIR confirming their nanoparticulate nature and stability. The antimicrobial effects of Streptomycin (50 µg/mL) and β-Ch-ZnO-NPs were compared across various microorganisms. β-Ch-ZnO-NPs at 100 µg/mL consistently showed larger inhibition zones than Streptomycin and β-Ch-ZnO-NPs at 50 µg/mL against Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, and Candida albicans.This suggests that β-Ch-ZnO-NPs at a higher concentration have potent antimicrobial activity across a broad spectrum of pathogens, highlighting their potential as effective antimicrobial agents. Kruskal-Wallis test showed statistically significant differences (P < 0.001) for all microbes, and post hoc analysis (Mann-Whitney U test) confirmed the P-value was less than 0.05. Molecular docking studies indicated strong binding affinities between β-Ch-ZnO-NPs and bacterial enzymes crucial for biofilm formation, suggesting inhibition of enzyme activity critical for bacterial virulence and survival. Conclusions This study highlights the synergistic potential of β-Chitosan and zinc oxide NPs in combating dental caries. The synthesized β-Ch-ZnO-NPs demonstrated effective antimicrobial activity against cariogenic microorganisms, attributed to their ability to disrupt bacterial metabolism and inhibit biofilm formation. Molecular docking analysis provided mechanistic insights into how β-Ch-ZnO-NPs interact with bacterial enzymes, reinforcing their role in impeding biofilm development. Overall, the findings support using β-Ch-ZnO-NPs as a promising therapeutic strategy for preventing and treating dental caries, leveraging their combined biofilm-targeting capabilities and antimicrobial effects.
Collapse
Affiliation(s)
- Nishitha Rajasekar
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Karthik Ganesh Mohanraj
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Center, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Meenakshi Sundaram K
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Li Y, Hua Z, Li Y, Chen T, Alamri AS, Xu Y, Gong W, Hou Y, Alhomrani M, Hu J. Development of multifunctional chitosan-based composite film loaded with tea polyphenol nanoparticles for strawberry preservation. Int J Biol Macromol 2024; 275:133648. [PMID: 38969040 DOI: 10.1016/j.ijbiomac.2024.133648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Incorporating polysaccharide-based composite films with nanobiotechnology offers a new strategy for food preservation. This study initially focuses on the preparation of tea polyphenol nanoparticles (TPNP), novel and derived from natural antibacterial agents, which serve to improve stability. Afterwards chitosan-based composite films loaded with TPNP (CTN film) were developed using solution casting method. The incorporation of TPNP significantly improved the UV/water/oxygen barrier properties, mechanical properties and thermal stability, alongside notable physical properties including water contact angle (93.65 ± 0.04°), low water vapor permeability (33.72 ± 3.32 g/m2h) and oxygen permeability (0.11 ± 0.02 g/m2h), tensile strength (61.83 ± 0.70 %), and elongation at break (31.60 ± 6.12 %). The CTN film not only exhibited exceptional biodegradability and nontoxicity, but also demonstrated remarkable antimicrobial efficacy against Escherichia coli and Bacillus subtilis. Additionally, it showcased potent antioxidant activity, boasting DPPH and ABTS radical scavenging rates up to 89.25 ± 0.18 % and 93.84 ± 0.42 %. The CTN film was successfully formed on the surface of strawberries through dip-coating process and their shelf life was extended from 4 to 6 days at 20 °C without side-effect on the weight loss, harness, pH and total soluble solids, illustrating its potential for enhancing food preservation.
Collapse
Affiliation(s)
- Yuxin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ziqi Hua
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Yu Xu
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yiyang Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Yan R, Liu M, Zeng X, Du Q, Wu Z, Guo Y, Tu M, Pan D. Preparation of modified chitosan-based nano-TiO 2-nisin composite packaging film and preservation mechanism applied to chilled pork. Int J Biol Macromol 2024; 269:131873. [PMID: 38677699 DOI: 10.1016/j.ijbiomac.2024.131873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed a nano-TiO2-nisin-modified chitosan composite packaging film and investigated its properties and antibacterial activity, as well as its effect on chilled pork preservation time. The results indicated that the preservation time of chilled pork coated with a nano-TiO2-nisin-modified chitosan film (including 0.7 g/L nano-TiO2, irradiated with ultraviolet light for 40 min, and dried for 6 h) followed by modified atmosphere packaging (50% CO2 + 50% N2) increased from 7 to 20 days at 4 °C. Both nano-TiO2 and nisin enhanced the mechanical strength of the chitosan film, and nisin promoted nano-TiO2 dispersion and compatibility in chitosan. Treatment with 0.4 g/L nano-TiO2 for 60 min considerably inhibited spoilage bacteria, particularly Acinetobacter johnnii XBB1 (A. johnnii XBB1). As nano-TiO2 concentration and photocatalytic time increased, K+, Ca2+, and Mg2+ leakage in A. johnnii XBB1 increased but Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities decreased. In A. johnnii XBB1, TiO2 significantly downregulated the expression of putrefaction-related genes such as cysM and inhibited cell self-regulation and membrane wall system repair. Therefore, our nano-TiO2-nisin-modified chitosan film could extend the shelf life without the addition of any chemical preservatives, demonstrating great potential for application in food preservation.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Mingxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Xie D, Ma H, Xie Q, Guo J, Liu G, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Guo M, Yin J. Developing active and intelligent biodegradable packaging from food waste and byproducts: A review of sources, properties, film production methods, and their application in food preservation. Compr Rev Food Sci Food Saf 2024; 23:e13334. [PMID: 38563107 DOI: 10.1111/1541-4337.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Food waste and byproducts (FWBP) are a global issue impacting economies, resources, and health. Recycling and utilizing these wastes, due to processing and economic constraints, face various challenges. However, valuable components in food waste inspire efficient solutions like active intelligent packaging. Though research on this is booming, its material selectivity, effectiveness, and commercial viability require further analysis. This paper categorizes FWBP and explores their potential for producing packaging from both animal and plant perspectives. In addition, the preparation/fabrication methods of these films/coatings have also been summarized comprehensively, focusing on the advantages and disadvantages of these methods and their commercial adaptability. Finally, the functions of these films/coatings and their ultimate performance in protecting food (meat, dairy products, fruits, and vegetables) are also reviewed systematically. FWBP provide a variety of methods for the application of edible films, including being made into coatings, films, and fibers for food preservation, or extracting active substances directly or indirectly from them (in the form of encapsulation) and adding them to packaging to endow them with functions such as barrier, antibacterial, antioxidant, and pH response. In addition, the casting method is the most commonly used method for producing edible films, but more film production methods (extrusion, electrospinning, 3D printing) need to be tried to make up for the shortcomings of the current methods. Finally, researchers need to conduct more in-depth research on various active compounds from FWBP to achieve better application effects and commercial adaptability.
Collapse
Affiliation(s)
- Delang Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Haiyang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Bingbing Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaojun Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qian Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qingqing Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoxue Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Fang Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Tidim G, Guzel M, Soyer Y, Erel-Goktepe I. Layer-by-layer assembly of chitosan/alginate thin films containing Salmonella enterica bacteriophages for antibacterial applications. Carbohydr Polym 2024; 328:121710. [PMID: 38220322 DOI: 10.1016/j.carbpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
The emergence of antibiotic resistant bacteria and the ineffectiveness of routine treatments inspired development of alternatives to biocides for antibacterial applications. Bacteriophages are natural predators of bacteria and are promising alternatives to antibiotics. This study presents fabrication of a Salmonella enterica bacteriophage containing ultra-thin multilayer film composed of chitosan and alginate and demonstrates its potential as an antibacterial coating for food packaging applications. Chitosan/alginate film was prepared through layer-by-layer (LbL) self-assembly technique. A bacteriophage, which belongs to Siphoviridae morphotype (MET P1-001_43) and infects Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis), was post-loaded into chitosan/alginate film. The LbL growth, stability, and surface morphology of chitosan/alginate film as well as phage deposition into multilayers were analysed through ellipsometry, QCM-D and AFM techniques. The bacteriophage containing multilayers showed antibacterial activity at pH 7.0. In contrast, anti-bacterial activity was not observed at acidic conditions. We showed that wrapping a Salmonella Enteritidis contaminated chicken piece with aluminium foil whose surface was modified with phage loaded chitosan/alginate multilayers decreased the number of colonies on the chicken meat, and it was as effective as treating the meat directly with phage solution.
Collapse
Affiliation(s)
- Gökçe Tidim
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Hitit University, 19030, Corum, Turkey
| | - Yesim Soyer
- Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Food Engineering, Middle East Technical University, 06800 Cankaya, Ankara, Turkey
| | - Irem Erel-Goktepe
- Department of Chemistry, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Department of Biotechnology, Middle East Technical University, 06800 Cankaya, Ankara, Turkey; Center of Excellence in Biomaterials and Tissue Eng. Middle East Technical University, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Dai L, Wang X, Mao X, He L, Li C, Zhang J, Chen Y. Recent advances in starch-based coatings for the postharvest preservation of fruits and vegetables. Carbohydr Polym 2024; 328:121736. [PMID: 38220350 DOI: 10.1016/j.carbpol.2023.121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Efficient and low-cost postharvest preservation of fruits and vegetables has always been one of the urgent problems to be solved in the food field. Due to the wide sources, good environmental and human safety, and high biodegradability, starch-based coating preservation method has great application prospects in the postharvest preservation of fruits and vegetables. However, starch materials also have the disadvantages of poor mechanical properties and easy water absorption performance, which makes it difficult to fully meet the requirements in practical production. Therefore, starch is often used in combination with other components to form composite materials. This paper began with an introduction to the preservation principles of edible starch-based coatings, including inherent properties and extra functional properties. Besides, the preservation principles of edible coatings and the recent advances in the field of fruit and vegetable preservation were also comprehensively reviewed, focusing on the preparation and application of starch-based coatings. The information will contribute to the further development of starch-based coatings to improve the postharvest preservation effect of fruits and vegetables.
Collapse
Affiliation(s)
- Limin Dai
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuzhuang Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiayu Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linyu He
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Changwei Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Zhang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, Zhejiang, China
| | - Yuan Chen
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
10
|
Chen H, Duan X, He X, Che W, Zhang Z, Xuan X, Wang L, Wang B, Xu J, Wang X. Multicomponent chitosan complex/polyvinyl alcohol blended film with full-band UV-shielding performance and excellent antioxidant property for active food packaging. Carbohydr Polym 2024; 327:121705. [PMID: 38171667 DOI: 10.1016/j.carbpol.2023.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Utilizing renewable natural resources to construct multifunctional packaging materials is critical to achieving sustainable development in the food packaging industry. In this study, we crafted transparent films with comprehensive UV-shielding and antioxidant properties by blending a multicomponent chitosan complex with polyvinyl alcohol (PVA), subsequently applied to preserve peanut butter. The multicomponent chitosan complex, synthesized from chitosan, ferulic acid (FA), and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA) through direct heating in water, served as the foundation. This chitosan complex was seamlessly blended with PVA, resulting in the creation of a transparent film through the solvent casting method. A meticulous investigation into the chemical structure and physicochemical properties of the blended films was conducted. The FA and TPCA components exhibited robust ultraviolet absorption properties, conferring virtually complete full-band ultraviolet shielding ability to the blend film. Additionally, FA endowed the blended film with significant antioxidant activity. The effectiveness of the chitosan complex/PVA blended film in preserving peanut butter from oxidative spoilage was demonstrated, showcasing its robustness in food preservation. Our research underscores the significance of creating advanced packaging materials from sustainable sources.
Collapse
Affiliation(s)
- Heng Chen
- Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiao Duan
- Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, Shanxi Provincial Key Laboratory of Functional Food with Homology of Medicine and Food, School of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Xinru He
- Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wenfeng Che
- Changzhi Key Laboratory of Drug Molecular Design and Innovative Pharmaceutics, Shanxi Provincial Key Laboratory of Functional Food with Homology of Medicine and Food, School of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Zhanpeng Zhang
- Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xuan Xuan
- Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Liwei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Biao Wang
- Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Xin Wang
- Songshan Lake Materials Laboratory, Dongguan 523808, China.
| |
Collapse
|
11
|
Gao T, Yan L, Yu Q, Lyu Y, Dong W, Chen M, Kaneko T, Shi D. High transparency, water vapor barrier and antibacterial properties of chitosan/carboxymethyl glucan/poly(vinyl alcohol)/nanoparticles encapsulating citral composite film for fruit packaging. Int J Biol Macromol 2024; 261:129755. [PMID: 38278385 DOI: 10.1016/j.ijbiomac.2024.129755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Utilizing antibacterial packaging material is an effective approach to delay fruit rotting and spoilage thereby minimizing financial losses and reducing health harm. However, the barrier and mechanical properties of biodegradable antibacterial packaging materials are barely compatible with transparency. Herein, antimicrobial nanoparticles encapsulating citral (ANPs) were first prepared by emulsification under the stabilization of oxidized dextran (ODE) and ethylene diamine. Then, composite films with high transparency, good water vapor barrier, and mechanical and antibacterial properties for fruits packaging were prepared from chitosan (CS), carboxymethyl-glucan (CMG), poly(vinyl alcohol) (PVA), and ANPs by solvent casting strategy. The synergistic effects of electrostatic interaction and hydrogen bonding could regulate crystalline architecture, generating high transparency of the composite films (90 %). The mechanical properties of the composite film are improved with elongation at break up to 167 % and stress up to 32 MPa. The water vapor barrier property of the film is appropriate to the packed fruit for less weight loss and firmness remaining. Simultaneously, the addition of ANPs endowed the film with excellent antimicrobial and UV-barrier capabilities to reduce fruit mildew, thereby extending the shelf life of fruits. More importantly, the composite polymer solution could be sprayed or dipped directly on fruits as a coating for food storage to improve food shelf life, substantially expanding its ease of use and scope of use.
Collapse
Affiliation(s)
- Tianhe Gao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lijuan Yan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuyan Yu
- Wuxi Vocational Institute of Commerce, Department of Mathematics, Wuxi 214153, China
| | - Yan Lyu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tatsuo Kaneko
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Lingait D, Rahagude R, Gaharwar SS, Das RS, Verma MG, Srivastava N, Kumar A, Mandavgane S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol 2024; 257:128676. [PMID: 38096942 DOI: 10.1016/j.ijbiomac.2023.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a versatile and generous biopolymer obtained by alkaline deacetylation of naturally occurring chitin, the second most abundant biopolymer after cellulose. The excellent physicochemical properties of polycationic chitosan are attributed to the presence of varied functional groups such as amino, hydroxyl, and acetamido groups enabling researchers to tailor the structure and properties of chitosan by different methods such as crosslinking, grafting, copolymerization, composites, and molecular imprinting techniques. The prepared derivatives have diverse applications in the food industry, water treatment, cosmetics, pharmaceuticals, agriculture, textiles, and biomedical applications. In this review, numerous applications of chitosan and its derivatives in various fields have been discussed in detail with an insight into their structure-property relationship. This review article concludes and explains the chitosan's biocompatibility and efficiency that has been done so far with future usage and applications as well. Moreover, the possible mechanism of chitosan's activity towards several emerging fields such as energy storage, biodegradable packaging, photocatalysis, biorefinery, and environmental bioremediation are also discussed. Overall, this comprehensive review discusses the science and complete information behind chitosan's wonder function to improve our understanding which is much needful as well as will pave the way towards a sustainable future.
Collapse
Affiliation(s)
- Diksha Lingait
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Rashmi Rahagude
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Shivali Singh Gaharwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Manisha G Verma
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Nupur Srivastava
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Sachin Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
13
|
Mohammed K, Yu D, Mahdi AA, Zhang L, Obadi M, Al-Ansi W, Xia W. Influence of cellulose viscosity on the physical, mechanical, and barrier properties of the chitosan-based films. Int J Biol Macromol 2024; 259:129383. [PMID: 38218274 DOI: 10.1016/j.ijbiomac.2024.129383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
This research paper presents a comprehensive investigation into developing biodegradable films for food packaging applications using chitosan (CN) in conjunction with three distinct types of cellulose (CE), each characterized by varying viscosities. The primary objective was to assess the influence of cellulose viscosity on the physical, mechanical, and barrier properties of the resulting films. The medium-viscosity cellulose imparted numerous advantageous qualities to the biodegradable films. These films exhibited optimal thickness (31 μm), ensuring versatility in food packaging while maintaining favorable mechanical properties, blending strength, and flexibility. Also, medium-viscosity cellulose significantly improved the films' barrier performance, particularly regarding oxygen permeability [1.80 × 10-6 (g.mm.m-2. s-1)]. Furthermore, the medium-viscosity cellulose contributed to superior moisture-related properties, including reduced water vapor permeability [14.80 × 10-9 (g.mm.m-2. s-1. Pa-1)], moisture content (13.22 %), and water solubility (22.87 %), while maintaining an appropriate degree of swelling (41.88 %). Moreover, the study employed advanced analytical techniques, including FTIR, XRD, and TGA, to provide critical insights into the films' chemical, structural, and thermal aspects. This research underscored the importance of the viscosity of film formulation materials as a crucial element in designing and efficiently producing films for food packaging.
Collapse
Affiliation(s)
- Khalid Mohammed
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Amer Ali Mahdi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Liming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Mouhoub A, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, Er Raouan S, Delattre C, El Modafar C. Preparation of bioactive film based on chitosan and essential oils mixture for enhanced preservation of food products. Int J Biol Macromol 2024; 259:129396. [PMID: 38219942 DOI: 10.1016/j.ijbiomac.2024.129396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Recently, the concept of biodegradable and bioactive packaging and surface coating has become a trend. In this work, the bioactive films of chitosan were elaborated following the casting method. Contrary to the films containing the Cinnamomum zeylanicum Blume, Thymus satureioides Cosson, and Syzygium aromaticum essential oils (EOs) mixtures, the control film was thin, colorless, and showed high moisture content, swelling degree, and elongation at break. Concerning the physicochemical parameters, the incorporation of the EOs mixtures minimized the hydrophobicity of the material (θw < 65°) and modified randomly its surface free energy components (γ-; γ+; γLW). The theoretical prediction of Aspergillus sp. and Rhizopus sp. adherence to the chitosan-based films was relatively correlated to the experimental results (r = -0.601). The latter showed that 6.80 % and 19.02 % of the control film surface was covered by Aspergillus sp. and Rhizopus sp. spores, respectively. In contrast, no fungal adherence was noticed in the case of the film incorporating the triple EOs mixture. These promising results revealed that chitosan film containing C. zeylanicum, T. satureioides, and S. aromaticum EOs mixtures could be utilized as a surface coating or bioactive packaging in the food industry.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Safae Er Raouan
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 7500 Paris, France.
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
16
|
Wei C, Yang X, Li Y, Wang L, Xing S, Qiao C, Li Y, Wang S, Zheng J, Dong Q. N-lauric-O-carboxymethyl chitosan: Synthesis, characterization and application as a pH-responsive carrier for curcumin particles. Int J Biol Macromol 2024; 256:128421. [PMID: 38013085 DOI: 10.1016/j.ijbiomac.2023.128421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
A pH-responsive amphiphilic chitosan derivative, N-lauric-O-carboxymethyl chitosan (LA-CMCh), is synthesized. Its molecular structures are characterized by FTIR, 1H NMR, and XRD methods. The influencing factors are investigated, including the amount of lauric acid (LA), carboxymethyl chitosan (CMCh), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS), and their molar ratio, reaction time, and reaction temperature on the substitution. The degrees of substitution (DS) of the lauric groups on the -NH2 groups are calculated based on the integrated data of 1H NMR spectra. The optimum reaction condition is obtained as a reaction time of 6 h, a reaction temperature of 80 °C, and a molar ratio of lauric acid to O-carboxymethyl chitosan to N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride to N-hydroxysuccinimide of 1:3:4.5:4.5, respectively. The crystallinity and initial decomposition temperature of LA-CMCh decrease, but the maximum decomposition temperature increases. The crystallinity is reduced due to the introduction of LA and the degree of hydrogen bonding among LA-CMCh molecules. LA-CMCh could self-aggregate into particles, which size and critical aggregation concentration depend on the degree of substitution and medium pH. LA-CMCh aggregates could load curcumin up to 21.70 %, and continuously release curcumin for >200 min. LA-CMCh shows nontoxicity to fibroblast HFF-1 cells and good antibacterial activity against S. aureus and E. coli, indicating that it could be used as an oil-soluble-drug carrier.
Collapse
Affiliation(s)
- Chunyan Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Xiaodeng Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Congde Qiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Shoujuan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Jialin Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250353, China
| | - Qiaoyan Dong
- Technology Center of Shandong Fangyan Biological Technology Co., LTD, 250021 Ji'nan, China
| |
Collapse
|
17
|
Sun H, Xu Q, Ren M, Kong F. A water-soluble and biocompatible chitosan-based fluorescent probe for real-time monitoring formaldehyde in living cells and zebrafish. Int J Biol Macromol 2023; 250:126157. [PMID: 37549768 DOI: 10.1016/j.ijbiomac.2023.126157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Formaldehyde (HCHO) is a common environmental toxicant that can harm the human respiratory tract and nervous system when exposed for long period of time. As a carcinogen, HCHO also increases the risk of cancer in humans. HCHO can be produced endogenously in living systems and plays an essential role in physiological and biochemical reactions and pathogenesis. Therefore, monitoring the level of HCHO in vivo and in vitro has become the focus of attention. The designed naphthalene fluorophore was introduced onto modified chitosan to prepare a chitosan-based fluorescent probe (CS-FA) for HCHO detection. Compared to other small-molecule probe analogs for the detection of HCHO, the randomly coiled polymer chain of chitosan enabled CS-FA to "enrich" HCHO using the synergistic binding of hydrazino-naphthalimide recognition sites. Thus, the reaction of the analyte with the recognition site was accelerated, resulting in a faster equilibrium fluorescence response (2-3 min) and high sensitivity. In addition, the introduction of biomass material chitosan also improved the biocompatibility of the probe. Then a series of composite materials (test strips and hydrogel) were prepared based on the probe to expand the application form of the probe.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
18
|
Zhao J, Wang Y, Li J, Lei H, Zhen X, Gou D, Liu T. Preparation of chitosan/Enoki mushroom foot polysaccharide composite cling film and its application in blueberry preservation. Int J Biol Macromol 2023; 246:125567. [PMID: 37379940 DOI: 10.1016/j.ijbiomac.2023.125567] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
In this study, the composite cling film was prepared by solution casting method using chitosan and golden mushroom foot polysaccharide as substrates, and the structure and physicochemical indexes of the composite cling film were characterized by Fourier infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The results showed that compared with single chitosan film, the composite cling film has better mechanical properties and antioxidant properties, and the barrier of UV light and water vapor is also stronger. Due to its high nutritional value, blueberry has a short shelf life due to its thin skin and poor storage resistance. Therefore, in this study, blueberry was used as the object of freshness preservation, and the single chitosan film group and the uncovered group were used as controls, and the weight loss, total bacterial colony, decay rate, respiration intensity, malondialdehyde content, hardness, soluble solids, titratable acid, anthocyanin content, and VC content of blueberry were used as freshness preservation indexes for experiments. The comprehensive results showed that the freshness preservation effect of the composite film group was significantly higher than that of the control group, with better antibacterial properties, antioxidant properties, etc., which could effectively delay fruit decay and deterioration, thus prolonging the shelf life, and thus the chitosan/Enoki mushroom foot polysaccharide composite preservation film has a high potential as a new freshness preservation material for blueberry.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China.
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Junbo Li
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Hongyu Lei
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Xinyu Zhen
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China.
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, No. 6543 Satellite Road, 130022 Changchun, China.
| |
Collapse
|
19
|
A comprehensive review of chitosan applications in paper science and technologies. Carbohydr Polym 2023; 309:120665. [PMID: 36906368 DOI: 10.1016/j.carbpol.2023.120665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Using environmentally friendly biomaterials in different aspects of human life has been considered extensively. In this respect, different biomaterials have been identified and different applications have been found for them. Currently, chitosan, the well-known derivative of the second most abundant polysaccharide in the nature (i.e., chitin), has been receiving a lot of attention. This unique biomaterial can be defined as a renewable, high cationic charge density, antibacterial, biodegradable, biocompatible, non-toxic biomaterial with high compatibility with cellulose structure, where it can be used in different applications. This review takes a deep and comprehensive look at chitosan and its derivative applications in different aspects of papermaking.
Collapse
|
20
|
Xia R, Hou Z, Xu H, Li Y, Sun Y, Wang Y, Zhu J, Wang Z, Pan S, Xin G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit Rev Food Sci Nutr 2023; 64:8445-8463. [PMID: 37083462 DOI: 10.1080/10408398.2023.2200482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Edible mushrooms are the highly demanded foods of which production and consumption have been steadily increasing globally. Owing to the quality loss and short shelf-life in harvested mushrooms, it is necessary for the implementation of effective preservation and intelligent evaluation technologies to alleviate this issue. The aim of this review was to analyze the development and innovation thematic lines, topics, and trends by bibliometric analysis and review of the literature methods. The challenges faced in researching these topics were proposed and the mechanisms of quality loss in mushrooms during storage were updated. This review summarized the effects of chemical processing (antioxidants, ozone, and coatings), physical treatments (non-thermal plasma, packaging and latent thermal storage) and other emerging application on the quality of fresh mushrooms while discussing the efficiency in extending the shelf-life. It also discussed the emerging evaluation techniques based on the various chemometric methods and computer vision system in monitoring the freshness and predicting the shelf-life of mushrooms which have been developed. Preservation technology optimization and dynamic quality evaluation are vital for achieving mushroom quality control. This review can provide a comprehensive research reference for reducing mushroom quality loss and extending shelf-life, along with optimizing efficiency of storage and transportation operations.
Collapse
Affiliation(s)
- Rongrong Xia
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhenshan Hou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Heran Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yunting Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing, China
| | - Yafei Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zijian Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
21
|
Inhibition of multi-species biofilm formation using chitosan-based film supplemented with essential oils. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
22
|
Luo J, Gu Y, Yuan Y, Wu W, Jin Y, Jiang B. Lignin-induced sacrificial conjoined-network enabled strong and tough chitosan membrane for food preservation. Carbohydr Polym 2023; 313:120876. [PMID: 37182966 DOI: 10.1016/j.carbpol.2023.120876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
As a natural green polymer, chitosan is a promising material for plastic replacement. However, the mutually exclusive strength and toughness severely limit its commercial application, and the improved strength of chitosan-based materials is typically achieved at the expense of elongation or toughness. Herein, inspired by the existed multiple non-covalent interactions in biosynthesized fibers, we successfully fabricated a high-performance lignin/chitosan composite film by constructing sacrificial conjoined-network (hydrogen bonds, electrostatic interaction, etc.), which results in an impressive enhancement in tensile strength (50.2 MPa), elongation (73.6 %), and toughness (2.7 MJ/m3) simultaneously, much superior to the pure chitosan film. In addition, the composite film also demonstrates excellent UV resistance, thermal stability, low oxygen permeability (3.9 cm3/(m2·24h‧0.1 MPa)) and food preservation (with no negligible change for grape, apple, and cherry tomato after 5-10 days). Such developed lignin/chitosan with both components from biomass represents a promising alternative for plastic replacement.
Collapse
|
23
|
Mouhoub A, Er Raouan S, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, El Abed S, Delattre C, El Modafar C. The effect of essential oils mixture on chitosan-based film surface energy and antiadhesion activity against foodborne bacteria. World J Microbiol Biotechnol 2023; 39:77. [PMID: 36642748 DOI: 10.1007/s11274-023-03520-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 01/17/2023]
Abstract
In the food sector, the formation of biofilms as a result of microbial adherence on food-grade surfaces causes a major problem resulting in significant economic losses. Thereby, this work aimed to elaborate a biodegradable film using chitosan (CS-film) and reinforce its antiadhesion activity by incorporating pelargonium, clove, thyme, and cinnamon essential oils (EOs). Firstly, the antibacterial activity of these EOs alone and combined against four foodborne bacteria were analyzed by the microdilution method. Synergism was observed in the case of EOs combination. Secondly, the physicochemical characteristics and antiadhesion behavior of the CS-films were assessed by the contact angle method and ESEM, respectively. Results revealed that the EOs mixture treatment impacted considerably the physicochemical characteristics of the CS-film and reduced its qualitative and quantitative hydrophobicity. Moreover, the treated CS-film showed a strong antiadhesion behavior against Enterococcus hirae, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus with percentages of non-covered surface equal to 97.65 ± 1.43%, 98.76 ± 0.32%, 99.68 ± 0.28%, and 95.63 ± 1.32% respectively. From all these results, the CS-film treated with the mixture of EOs presents a great potential for application as surface coating and food packaging preventing microbial adhesion and thus, avoiding food contamination and spoilage.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco.
| | - Safae Er Raouan
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Amine Guendouz
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Soumya El Abed
- Laboratoire de Biotechnologie Microbienne Et Molécules Bioactives, Faculté Des Sciences Et Techniques, Université Sidi Mohamed Ben Abdellah, Morocco Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France.,Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie Et Bioingénierie, Unité de Recherche Labellisée, URL-CNRST 05), Faculté Des Sciences Et Techniques, CNRST (Centre AgroBiotech, Université Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
24
|
Thermally-induced crosslinking altering the properties of chitosan films: Structure, physicochemical characteristics and antioxidant activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Ding X, Zhao L, Khan IM, Yue L, Zhang Y, Wang Z. Emerging chitosan grafted essential oil components: A review on synthesis, characterization, and potential application. Carbohydr Polym 2022; 297:120011. [DOI: 10.1016/j.carbpol.2022.120011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023]
|
26
|
Zhang H, Feng M, Fang Y, Wu Y, Liu Y, Zhao Y, Xu J. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Crit Rev Food Sci Nutr 2022; 63:11044-11062. [PMID: 35694766 DOI: 10.1080/10408398.2022.2086851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.
Collapse
Affiliation(s)
- Hongcai Zhang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yapeng Fang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jianxiong Xu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| |
Collapse
|
27
|
Kemsawasd V, Inthachat W, Suttisansanee U, Temviriyanukul P. Road to The Red Carpet of Edible Crickets through Integration into the Human Food Chain with Biofunctions and Sustainability: A Review. Int J Mol Sci 2022; 23:ijms23031801. [PMID: 35163720 PMCID: PMC8836810 DOI: 10.3390/ijms23031801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023] Open
Abstract
The Food and Agriculture Organization of the United Nations (FAO) estimates that more than 500 million people, especially in Asia and Africa, are suffering from malnutrition. Recently, livestock farming has increased to supply high-quality protein, with consequent impact on the global environment. Alternative food sources with high nutritive values that can substitute livestock demands are urgently required. Recently, edible crickets have been promoted by the FAO to ameliorate the food crisis. In this review, the distribution, nutritive values, health-promoting properties (antioxidant, anti-inflammatory, anti-diabetic and anti-obesity), safety, allergenicity as well as the potential hazards and risks for human consumption are summarized. Cricket farming may help to realize the United Nations sustainable development goal No. 2 Zero Hunger. The sustainability of cricket farming is also discussed in comparison with other livestock. The findings imply that edible crickets are safe for daily intake as a healthy alternative diet due to their high protein content and health-promoting properties. Appropriate use of edible crickets in the food and nutraceutical industries represents a global business potential. However, people who are allergic to shellfish should pay attention on cricket allergy. Thus, the objective of this review was to present in-depth and up-to-date information on edible crickets to advocate and enhance public perception of cricket-based food.
Collapse
|