1
|
Abdelshafy AM, Mahmoud AR, Abdelrahman TM, Mustafa MA, Atta OM, Abdelmegiud MH, Al-Asmari F. Biodegradation of chemical contamination by lactic acid bacteria: A biological tool for food safety. Food Chem 2024; 460:140732. [PMID: 39106807 DOI: 10.1016/j.foodchem.2024.140732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Ahmed Rashad Mahmoud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Talat M Abdelrahman
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt.
| | - Mustafa Abdelmoneim Mustafa
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mahmoud H Abdelmegiud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
2
|
Hamad GM, Abushaala MMF, Abushaala SM, Ehmeza NT, Hassan Ahmed EM, Elshaer SE, Abdelhiee EY, Eskander M, Elaziz AA, Mehany T. Acrylamide detection and reduction in meat products using organic acids, fruit extracts, and probiotics. Food Chem Toxicol 2024; 192:114927. [PMID: 39134133 DOI: 10.1016/j.fct.2024.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Grilled foods are an important source of acrylamide, which has neurotoxic, genotoxic, and carcinogenic properties. The current study aims to evaluate the level of acrylamide in beef, chicken, and fish products, especially those requiring high cooking temperatures, using High Performance Liquid Chromatography (HPLC). Reduction of acrylamide by organic acids i.e., (citric acid, malic acid, tartaric acid, and lactic acid) and fruit extracts of lemon, apple, and grape has also been investigated. The results revealed that the highest mean acrylamide concentration was found in chicken products (grilled chicken) which recorded 8.32 μg/100 g, followed by beef products (beef grilled) with a concentration of 7.91 μg/100 g, and fish products (pan-fried fish burgers) which recorded 6.77 μg/100 g). Furthermore, the mixture of organic acid has the highest effect on reducing the level of acrylamide in a chemical model system. Moreover, the fruit extract mixture was more effective in reducing the percentage of acrylamide in the grilled chicken than organic acids mixture. Finally, the addition of fruit extract improved the sensory properties of grilled chickens. In sum, this study offers novel and promising natural strategies to decrease acrylamide in meat products toward further future application in meat industry to deliver safe food to consumers.
Collapse
Affiliation(s)
- Gamal M Hamad
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab City, 21934, Alexandria, Egypt.
| | - Mukhtar M F Abushaala
- Department of Food Hygiene, Faculty of Veterinary Medicine Azzaytuna University, Tarhuna, 22131, Libya
| | - Sohayla M Abushaala
- Department of Food Science Technology, Al-Gheran High Institute of Agriculture Techniques, Tripoli, Libya
| | - Nasser T Ehmeza
- Department of Pharmacology, Forensic Medicine and Toxicology, Faculty of Veterinary Medicine Azzaytuna University, Tarhuna, 22131, Libya
| | - Essa Mohamed Hassan Ahmed
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Assiut, 71524, Egypt
| | - Samy E Elshaer
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Ehab Y Abdelhiee
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | - Michael Eskander
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | - Adel Abd Elaziz
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Cairo, 11651, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
3
|
Lin J, Zeng C, Li X, Tang Q, Liao J, Jiang Y, Zeng X. Microorganisms in the rumen and intestine of camels have the ability to degrade 2-amino-3-methylimidazo[4, 5-f]quinoline. Food Sci Nutr 2024; 12:4667-4679. [PMID: 39055183 PMCID: PMC11266888 DOI: 10.1002/fsn3.4115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024] Open
Abstract
Heterocyclic amines (HAs) are a group of mutagenic and carcinogenic compounds produced from the processing of high-protein foods, which include 2-amino-3-methylimidazo[4, 5-f]quinoline (IQ) showing the strongest carcinogenic effect. Camels are able to digest HAs in foods, which provide rich microbial resources for the study. Thus, camel rumen and intestinal microbiota were used to degrade IQ, and the dominant microorganisms and their degradation characteristics were investigated. After three generations of culture with IQ as the sole carbon source, the highest abundance in rumen and intestinal microbes was found in the Proteobacteria phylum. The strains of third generation of the rumen contents were mainly attributed to the genera Brevundimonas and Pseudomonas, and the dominant genera in intestine were Ochrobactrum, Bacillus, and Pseudomonas. Microorganisms were further isolated and purified from the third generation cultures. These 27 strains from the rumen (L1-L27) and 23 strains from the intestine (C1-C23) were obtained. Among them, four strains with the most effective degrading abilities were as follows: L6 (28.55% of IQ degrading rate) and C1 (25.19%) belonged to the genus Ochrobactrum, L15 (23.41%) belonged to the genus Pseudomonas, and C16 (20.89%) were of the genus Bacillus. This study suggested the application of abundant microbial resources from camels' digestive tract to biodegrade foodborne toxins.
Collapse
Affiliation(s)
- Jialing Lin
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
- Solid‐State Fermentation Resource Utilization Key Laboratory of Sichuan ProvinceYibinSichuanChina
- Sichuan Tianfu New District People's HospitalChengduChina
| | - Chuanhui Zeng
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
| | - Xueli Li
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
- Solid‐State Fermentation Resource Utilization Key Laboratory of Sichuan ProvinceYibinSichuanChina
| | - Qin Tang
- Xinjiang Urumqi Traditional Chinese Medicine HospitalUrumqiXinjiangChina
| | - Jing Liao
- Meat Processing Key Laboratory of Sichuan ProvinceChengduSichuanChina
| | - Yan Jiang
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
| | - Xianchun Zeng
- Chengdu Medical CollegeSchool of Laboratory MedicineChengduSichuanChina
| |
Collapse
|
4
|
Layla A, Syed QA, Zahoor T, Shahid M. Investigating the role of Lactiplantibacillus plantarum vs. spontaneous fermentation in improving nutritional and consumer safety of the fermented white cabbage sprouts. Int Microbiol 2024; 27:753-764. [PMID: 37700156 DOI: 10.1007/s10123-023-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Brassicaceae sprouts are promising candidates for functional food because of their unique phytochemistry and high nutrient density compared to their seeds and matured vegetables. Despite being admired for their health-promoting properties, white cabbage sprouts have been least explored for their nutritional significance and behavior to lactic acid fermentation. This study aimed to investigate the role of lactic acid fermentation, i.e., inoculum vs. spontaneous, in reducing intrinsic toxicants load and improving nutrients delivering potential of the white cabbage sprouts. White cabbage sprouts with a 5-7 cm average size were processed as raw, blanched, Lactiplantibacillus plantarum-inoculated fermentation, and spontaneous fermentation. Plant material was dehydrated at 40 °C and evaluated for microbiological quality, macronutrients, minerals, and anti-nutrient contents. The results indicate L. plantarum inoculum fermentation of blanched cabbage sprouts (IF-BCS) to increase lactic acid bacteria count of the sprouts from 0.97 to 8.47 log CFU/g. Compared with the raw cabbage sprouts (RCS), inoculum fermented-raw cabbage sprouts (IF-RCS), and spontaneous fermented-raw cabbage sprouts (SF-RCS), the highest content of Ca (447 mg/100 g d.w.), Mg (204 mg/100 g d.w.), Fe (9.3 mg/100 g d.w.), Zn (5 mg/100 g d.w.), and Cu (0.5 mg/100 g d.w.) were recorded in IF-BCS. L. plantarum-led fermentation of BCS demonstrated a reduction in phytates, tannins, and oxalates contents at a rate of 42%, 66%, and 53%, respectively, while standalone lactic acid fermentation of the raw sprouts reduced the burden of anti-nutrients in a range between 32 and 56%. The results suggest L. plantarum-led lactic acid fermentation coupled with sprout blanching is the most promising way to improve the nutritional quality and safety of the white cabbage sprouts.
Collapse
Affiliation(s)
- Anam Layla
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Qamar Abbas Syed
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Tahir Zahoor
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Sattar A, Ridoy MAM, Saha AK, Hasan Babu HM, Huda MN. Computer vision based deep learning approach for toxic and harmful substances detection in fruits. Heliyon 2024; 10:e25371. [PMID: 38327430 PMCID: PMC10847935 DOI: 10.1016/j.heliyon.2024.e25371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Formaldehyde (CH₂O) is one of the significant chemicals mixed with different perishable fruits in Bangladesh. The fruits are artificially preserved for extended periods by dishonest vendors using this dangerous chemical. Such substances are complicated to detect in appearance. Hence, a reliable and robust detection technique is required. To overcome this challenge and address the issue, we introduce comprehensive deep learning-based techniques for detecting toxic substances. Four different types of fruits, both in fresh and chemically mixed conditions, are used in this experiment. We have applied diverse data augmentation techniques to enlarge the dataset. The performance of four different pre-trained deep learning models was then assessed, and a brand-new model named "DurbeenNet," created especially for this task, was presented. The primary objective was to gauge the efficacy of our proposed model compared to well-established deep learning architectures. Our assessment centered on the models' accuracy in detecting toxic substances. According to our research, GoogleNet detected toxic substances with an accuracy rate of 85.53 %, VGG-16 with an accuracy rate of 87.44 %, DenseNet with an impressive accuracy rate of 90.37 %, and ResNet50 with an accuracy rate of 91.66 %. Notably, the proposed model, DurbeenNet, outshone all other models, boasting an impressive accuracy rate of 96.71 % in detecting toxic substances among the sample fruits.
Collapse
Affiliation(s)
- Abdus Sattar
- Centre for Higher Studies and Research, Bangladesh University of Professionals, Dhaka, Bangladesh
- Department of Computer Science & Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Md. Asif Mahmud Ridoy
- Department of Computer Science & Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Aloke Kumar Saha
- Department of Computer Science & Engineering, University of Asia Pacific, Dhaka, Bangladesh
| | - Hafiz Md. Hasan Babu
- Department of Computer Science & Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Nurul Huda
- Department of Computer Science & Engineering, United International University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Chemical Compositions, Extraction Optimizations, and In Vitro Bioactivities of Flavonoids from Perilla Leaves ( Perillae folium) by Microwave-Assisted Natural Deep Eutectic Solvents. Antioxidants (Basel) 2022; 12:antiox12010104. [PMID: 36670966 PMCID: PMC9855092 DOI: 10.3390/antiox12010104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Natural deep eutectic solvents (NADESs) have been gradually applied to green extraction of active ingredients. In this study, microwave-assisted NADESs were applied to the extraction of flavonoid compounds from perilla leaves. Through comparative experiments, NADES-3 (choline chloride and malic acid at a molar ratio of 1:1) was found to have the highest extraction efficiency of total flavonoids, including apigenin 7-O-caffeoylglucoside, scutellarein 7-O-diglucuronide, luteolin 7-O-diglucuronide, and scutellarein 7-O-glucuronide by HPLC-MS. The following optimal extraction parameters were obtained based on response surface design: water content in NADES of 23%, extraction power of 410 W, extraction time of 31 min, and solid-liquid ratio of 75 mg/mL, leading to the extraction yield of total flavonoids of 72.54 mg/g. Additionally, the strong antimicrobial and antiallergic activity, inhibition of nitrosation, and antioxidant activity of total flavonoids by using NADESs were confirmed. This new extraction method provides a reference for the further exploration of NADES systems and may be widely used for the green extraction of natural active ingredients.
Collapse
|
7
|
Albedwawi AS, Al Sakkaf R, Osaili TM, Yusuf A, Al Nabulsi A, Liu SQ, Palmisano G, Ayyash MM. Acrylamide adsorption by Enterococcus durans and Enterococcus faecalis: In vitro optimization, simulated digestive system and binding mechanism. Front Microbiol 2022; 13:925174. [PMID: 36425028 PMCID: PMC9679154 DOI: 10.3389/fmicb.2022.925174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Acrylamide is an unsaturated amide that forms in heated, starchy food products. This study was conducted to (1) examine the ability of 38 LAB to remove acrylamide; (2) optimize acrylamide removal of selected LAB under various conditions (pH, temperature, time and salt) using the Box-Behnken design (BBD); (3) the behavior of the selected LAB under the simulated gastrointestinal conditions; and (4) investigate the mechanism of adsorption. Out of the 38 LAB, Enterococcus durans and Enterococcus faecalis had the highest results in removing acrylamide, with 33 and 30% removal, respectively. Those two LAB were further examined for their binding abilities under optimized conditions of pH (4.5-6.5), temperature (32°C - 42°C), time (14-22 h), and NaCl (0-3% w/v) using BBD. pH was the main factor influenced the acrylamide removal compared to other factors. E. durans and E. faecalis exhibited acrylamide removal of 44 and 53%, respectively, after the in vitro digestion. Zeta potential results indicated that the changes in the charges were not the main cause of acrylamide removal. Transmission electron microscopes (TEM) results indicated that the cell walls of the bacteria increased when cultured in media supplemented with acrylamide.
Collapse
Affiliation(s)
- Amal S. Albedwawi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Reem Al Sakkaf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Yusuf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Anas Al Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giovanni Palmisano
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Yu Y, Li L, Xu Y, Li H, Yu Y, Xu Z. Metagenomics Reveals the Microbial Community Responsible for Producing Biogenic Amines During Mustard [Brassica juncea (L.)] Fermentation. Front Microbiol 2022; 13:824644. [PMID: 35572710 PMCID: PMC9100585 DOI: 10.3389/fmicb.2022.824644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines (BAs) are considered potential hazards produced during fermented food processing, and the production of BAs is closely related to microbial metabolism. In this work, the changes of BA content were analyzed during mustard fermentation, and microbes and gene abundance responsible for producing BAs were revealed by metagenomic analyses. The results showed that cadaverine, putrescine, tyramine, and histamine were generated during mustard fermentation, which mainly accumulate in the first 6 days of fermentation. According to the metagenome sequencing, the predominant genus was Bacillus (64.78%), followed by Lactobacillus (11.67%), Weissella (8.88%), and Leuconostoc (1.71%) in the initial fermentation stage (second day), while Lactobacillus (76.03%) became the most dominant genus in the late stage. In addition, the gene abundance of BA production enzymes was the highest in the second day and decreased continuously as fermentation progressed. By tracking the source of the enzyme in the KEGG database, both Bacillus and Delftia closely correlated to the generation of putrescine. Besides, Bacillus also correlated to the generation of tyramine and spermidine, and Delftia also correlated to the generation of cadaverine and spermine. In the processes of fermentation, the pH of fermented mustard showed slower decrease compared with other similar fermented vegetables, which may allow Bacillus to grow at high levels before the pH <4. This study reveals the change of BA content and microbes involved in BA formation during mustard fermentation.
Collapse
Affiliation(s)
- Yangyang Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Li
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanshan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- *Correspondence: Yuanshan Yu,
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Zhenlin Xu,
| |
Collapse
|
9
|
Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021; 10:foods10092092. [PMID: 34574202 PMCID: PMC8471122 DOI: 10.3390/foods10092092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal products, in particular dairy and fermented products, are major natural sources of lactic acid bacteria (LAB). These are known for their antimicrobial properties, as well as for their roles in organoleptic changes, antioxidant activity, nutrient digestibility, the release of peptides and polysaccharides, amino acid decarboxylation, and biogenic amine production and degradation. Due to their antimicrobial properties, LAB are used in humans and in animals, with beneficial effects, as probiotics or in the treatment of a variety of diseases. In livestock production, LAB contribute to animal performance, health, and productivity. In the food industry, LAB are applied as bioprotective and biopreservation agents, contributing to improve food safety and quality. However, some studies have described resistance to relevant antibiotics in LAB, with the concomitant risks associated with the transfer of antibiotic resistance genes to foodborne pathogens and their potential dissemination throughout the food chain and the environment. Here, we summarize the application of LAB in livestock and animal products, as well as the health impact of LAB in animal food products. In general, the beneficial effects of LAB on the human food chain seem to outweigh the potential risks associated with their consumption as part of animal and human diets. However, further studies and continuous monitorization efforts are needed to ensure their safe application in animal products and in the control of pathogenic microorganisms, preventing the possible risks associated with antibiotic resistance and, thus, protecting public health.
Collapse
|