1
|
Khani N, Bonyadi M, Soleimani RA, Raziabad RH, Ahmadi M, Homayouni-Rad A. Postbiotics: As a Promising Tools in the Treatment of Celiac Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10416-y. [PMID: 39673575 DOI: 10.1007/s12602-024-10416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Celiac disease (CD) can be considered an autoimmune problem, a disease caused by gluten sensitivity in the body. Gluten is found in foods such as barley, wheat, and rye. This ailment manifests in individuals with hereditary susceptibility and under the sway of environmental stimulants, counting, in addition to gluten and intestinal microbiota dysbiosis. Currently, the only recommended treatment for this condition is to follow a gluten-free diet for life. In this review, we scrutinized the studies of recent years that focused on the use of postbiotics in vitro and in vivo in CD. The investigation of postbiotics in CD could be intriguing to observe their diverse effects on several pathways. This study highlights the definitions, characteristics, and safety issues of postbiotics and their possible biological role in the prevention and treatment of CD, as well as their application in the food and drug industry.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Roya Abedi Soleimani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Ahmadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Hosseinzadeh N, Asqardokht-Aliabadi A, Sarabi-Aghdam V, Hashemi N, Dogahi PR, Sarraf-Ov N, Homayouni-Rad A. Antioxidant Properties of Postbiotics: An Overview on the Analysis and Evaluation Methods. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10372-7. [PMID: 39395091 DOI: 10.1007/s12602-024-10372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Antioxidants found naturally in foods have a significant effect on preventing several human diseases. However, the use of synthetic antioxidants in studies has raised concerns about their potential link to liver disease and cancer. The findings show that postbiotics have the potential to act as a suitable alternative to chemical antioxidants in the food and pharmaceutical sectors. Postbiotics are bioactive compounds generated by probiotic bacteria as they ferment prebiotic fibers in the gut. These compounds can also be produced from a variety of substrates, including non-prebiotic carbohydrates such as starches and sugars, as well as proteins and organic acids, all of which probiotics utilize during the fermentation process. These are known for their antioxidant, antibacterial, anti-inflammatory, and anti-cancer properties that help improve human health. Various methodologies have been suggested to assess the antioxidant characteristics of postbiotics. While there are several techniques to evaluate the antioxidant properties of foods and their bioactive compounds, the absence of a convenient and uncomplicated method is remarkable. However, cell-based assays have become increasingly important as an intermediate method that bridges the gap between chemical experiments and in vivo research due to the limitations of in vitro and in vivo assays. This review highlights the necessity of transitioning towards more biologically relevant cell-based assays to effectively evaluate the antioxidant activity of postbiotics. These experiments are crucial for assessing the biological efficacy of dietary antioxidants. This review focuses on the latest applications of the Caco-2 cell line in the assessment of cellular antioxidant activity (CAA) and bioavailability. Understanding the impact of processing processes on the biological properties of postbiotic antioxidants can facilitate the development of new food and pharmaceutical products.
Collapse
Affiliation(s)
- Negin Hosseinzadeh
- Student Research Committee, Department of Food Science and Technology, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hashemi
- University of Applied Science & Technology, Center of Pardisan Hospitality & Tourism Management, Mashhad, Iran
| | - Parisa Rahimi Dogahi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Narges Sarraf-Ov
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
6
|
Isaac-Bamgboye FJ, Mgbechidinma CL, Onyeaka H, Isaac-Bamgboye IT, Chukwugozie DC. Exploring the Potential of Postbiotics for Food Safety and Human Health Improvement. J Nutr Metab 2024; 2024:1868161. [PMID: 39139215 PMCID: PMC11321893 DOI: 10.1155/2024/1868161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Food safety is a global concern, with millions suffering from foodborne diseases annually. The World Health Organization (WHO) reports significant morbidity and mortality associated with contaminated food consumption, and this emphasizes the critical need for comprehensive food safety measures. Recent attention has turned to postbiotics, metabolic byproducts of probiotics, as potential agents for enhancing food safety. Postbiotics, including organic acids, enzymes, and bacteriocins, exhibit antimicrobial and antioxidant properties that do not require live organisms, and this offers advantages over probiotics. This literature review critically examines the role of postbiotics in gut microbiome modulation and applications in the food industry. Through an extensive review of existing literature, this study evaluates the impact of postbiotics on gut microbiome composition and their potential as functional food ingredients. Research indicates that postbiotics are effective in inhibiting food pathogens such as Staphylococcus aureus, Salmonella enterica, and Escherichia coli, as well as their ability to prevent oxidative stress-related diseases, and they also show promise as alternatives to conventional food preservatives that can extend food shelf life by inhibiting harmful bacterial growth. Their application in functional foods contributes to improved gut health and reduced risk of foodborne illnesses. Findings suggest that postbiotics hold promise for improving health and preservation by inhibiting pathogenic bacteria growth and modulating immune responses.
Collapse
Affiliation(s)
- Folayemi Janet Isaac-Bamgboye
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
- Department of Food Science and TechnologyFederal University of Technology, Akure, Ondo State, Nigeria
| | - Chiamaka Linda Mgbechidinma
- Centre for Cell and Development Biology and State Key Laboratory of AgrobiotechnologySchool of Life SciencesThe Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ocean CollegeZhejiang University, Zhoushan 316021, Zhejiang, China
- Department of MicrobiologyUniversity of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Helen Onyeaka
- Department of Chemical EngineeringUniversity of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
7
|
Khani N, Noorkhajavi G, Reziabad RH, Rad AH, Ziavand M. Postbiotics as Potential Detoxification Tools for Mitigation of Pesticides. Probiotics Antimicrob Proteins 2024; 16:1427-1439. [PMID: 37934379 DOI: 10.1007/s12602-023-10184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Pesticides possess a pivotal role in the realm of agriculture and food manufacturing, as they effectively manage the proliferation of weeds, insects, plant pathogens, and microbial contaminations. They are valuable in some ways, but if misused, they can cause health issues like cancer, reproductive toxicity, neurological illnesses, and endocrine system disturbances. In this regard, practical methods for reducing pesticide residue in food should be used. For reducing pesticide residue in food processing, some strategies have been suggested. Recent research has been done on detoxification processes, including microorganisms like probiotics and their metabolites. The term "postbiotics" describes soluble substances, such as peptides, enzymes, teichoic acids, muropeptides generated from peptidoglycans, polysaccharides, proteins, and organic acids that are secreted by living bacteria or released after bacterial lysis. Due to their distinct chemical makeup, safe dosage guidelines, lengthy shelf lives, and presence of various signaling molecules that may have antioxidant, anti-inflammatory, anti-obesogenic, immunomodulatory, anti-hypertensive, and immunomodulatory effects, these postbiotics have attracted interest. They also can detoxify heavy metals, mycotoxins, and pesticides. Hydrolytic enzymes have been proposed as a potential mechanism for pesticide degradation. Postbiotics can also reduce reactive oxygen species production, enhance gastrointestinal barrier function, reduce inflammation, and modulate host xenobiotic metabolism. This review highlights pesticide residues in food products, definitions and safety aspect of postbiotics, as well as their biological role in detoxification of pesticides and the protective role of these compounds against the adverse effects of pesticides.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Reziabad
- Student Research Committee, Department of Food Science and Technology., National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran.
| | - Mohammadreza Ziavand
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| |
Collapse
|
8
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10327-y. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Liu S, Alipour H, Zachar V, Kesmodel US, Dardmeh F. Effect of Postbiotics Derived from Lactobacillus rhamnosus PB01 (DSM 14870) on Sperm Quality: A Prospective In Vitro Study. Nutrients 2024; 16:1781. [PMID: 38892713 PMCID: PMC11174611 DOI: 10.3390/nu16111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Vaginally administered postbiotics derived from Lactobacillus were recently demonstrated to be effective in alleviating bacterial vaginosis and increasing pregnancy rates. However, their potential effect on sperm quality has not been well investigated. This controlled in vitro study aimed to assess the dose- and time-dependent effects of postbiotics derived from Lactobacillus rhamnosus PB01 (DSM 14870) on sperm quality parameters. The experiment was conducted in vitro to eliminate potential confounding factors from the female reproductive tract and vaginal microbiota. Sperm samples from 18 healthy donors were subjected to analysis using Computer-Aided Sperm Analysis (CASA) in various concentrations of postbiotics and control mediums at baseline, 60 min, and 90 min of incubation. Results indicated that lower postbiotic concentration (PB5) did not adversely affect sperm motility, kinematic parameters, sperm DNA fragmentation, and normal morphology at any time. However, concentrations exceeding 15% demonstrated a reduction in progressively motile sperm and a negative correlation with non-progressively motile sperm at all time points. These findings underscore the importance of balancing postbiotic dosage to preserve sperm motility while realizing the postbiotics' vaginal health benefits. Further research is warranted to understand the underlying mechanisms and refine practical applications in reproductive health.
Collapse
Affiliation(s)
- Sihan Liu
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| | - Ulrik Schiøler Kesmodel
- Department of Clinical Medicine, Aalborg University, 9260 Gistrup, Denmark;
- Department of Obstetrics and Gynecology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Fereshteh Dardmeh
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (H.A.); (V.Z.)
| |
Collapse
|
10
|
Sepordeh S, Jafari AM, Bazzaz S, Abbasi A, Aslani R, Houshmandi S, Rad AH. Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry. Curr Pharm Biotechnol 2024; 25:1245-1263. [PMID: 37702234 DOI: 10.2174/1389201025666230912123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk. OBJECTIVES With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance. RESULTS Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods. CONCLUSION Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
Collapse
Affiliation(s)
- Sama Sepordeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Houshmandi
- Department of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Huang G, Khan R, Zheng Y, Lee PC, Li Q, Khan I. Exploring the role of gut microbiota in advancing personalized medicine. Front Microbiol 2023; 14:1274925. [PMID: 38098666 PMCID: PMC10720646 DOI: 10.3389/fmicb.2023.1274925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Ongoing extensive research in the field of gut microbiota (GM) has highlighted the crucial role of gut-dwelling microbes in human health. These microbes possess 100 times more genes than the human genome and offer significant biochemical advantages to the host in nutrient and drug absorption, metabolism, and excretion. It is increasingly clear that GM modulates the efficacy and toxicity of drugs, especially those taken orally. In addition, intra-individual variability of GM has been shown to contribute to drug response biases for certain therapeutics. For instance, the efficacy of cyclophosphamide depends on the presence of Enterococcus hirae and Barnesiella intestinihominis in the host intestine. Conversely, the presence of inappropriate or unwanted gut bacteria can inactivate a drug. For example, dehydroxylase of Enterococcus faecalis and Eggerthella lenta A2 can metabolize L-dopa before it converts into the active form (dopamine) and crosses the blood-brain barrier to treat Parkinson's disease patients. Moreover, GM is emerging as a new player in personalized medicine, and various methods are being developed to treat diseases by remodeling patients' GM composition, such as prebiotic and probiotic interventions, microbiota transplants, and the introduction of synthetic GM. This review aims to highlight how the host's GM can improve drug efficacy and discuss how an unwanted bug can cause the inactivation of medicine.
Collapse
Affiliation(s)
- Gouxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Ping-Chin Lee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Qingnan Li
- Clinical Research Center, Shantou Central Hospital, Shantou, China
- Department of Pharmacy, Shantou Central Hospital, Shantou, China
| | - Imran Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
12
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
13
|
Abbasi A, Sabahi S, Bazzaz S, Tajani AG, Lahouty M, Aslani R, Hosseini H. An edible coating utilizing Malva sylvestris seed polysaccharide mucilage and postbiotic from Saccharomyces cerevisiae var. boulardii for the preservation of lamb meat. Int J Biol Macromol 2023; 246:125660. [PMID: 37399877 DOI: 10.1016/j.ijbiomac.2023.125660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/06/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Currently, microbial bioactive substances (postbiotics) are considered a promising tool for achieving customer demand for natural preservatives. This study aimed to investigate the effectiveness of an edible coating developed by Malva sylvestris seed polysaccharide mucilage (MSM) and postbiotics from Saccharomyces cerevisiae var. boulardii ATCC MYA-796 (PSB) for the preservation of lamb meat. PSB were synthesized, and a gas chromatograph connected to a mass spectrometer and a Fourier transform infrared spectrometer were used to determine their chemical components and main functional groups, respectively. The Folin-Ciocalteu and aluminium chloride techniques were utilized to assess the total flavonoid and phenolic levels of PSB. Following that, PSB has been incorporated into the coating mixture, which contains MSM, and its potential radical scavenging and antibacterial activities on lamb meat samples were determined after 10 days of 4 °C storage. PSB contains 2-Methyldecane, 2-Methylpiperidine, phenol, 2,4-bis (1,1-dimethyl ethyl), 5,10-Diethoxy-2,3,7,8- tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d] pyrazine, and Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-(phenylmethyl)-, (5'alpha) as well as various organic acids with significant radical scavenging activity (84.60 ± 0.62 %) and antibacterial action toward Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and Listeria innocua as foodborne pathogens. The edible PSB-MSM coating effectively reduced microbial growth and increased meat shelf life (> 10 days). When PSB solutions were added to the edible coating, the moisture content, pH value, and hardness of the samples were also more successfully maintained (P < 0.05). The PSB-MSM coating inhibited lipid oxidation in meat samples considerably and diminished the formation of primary as well as secondary oxidation intermediates (P < 0.05). Additionally, when MSM + 10 % PSB edible coating was utilized, the sensory properties of the samples were maintained more well during preservation. As a significance, the use of edible coatings based on PSB and MSM is efficient in decreasing microbiological and chemical degradation in lamb meat during preservation.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zheng X, Nie W, Xu J, Zhang H, Liang X, Chen Z. Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose. Food Res Int 2022; 162:112024. [PMID: 36461308 DOI: 10.1016/j.foodres.2022.112024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/13/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Fungal infection and/or spoilage are major concerns of crop and food security worldwide, prompting the developments and application of various antimicrobial agents. In this study, nine strains of lactic acid bacteria (LAB) with antifungal activities were isolated from the traditional Chinese fermented wort of Meigui rice vinegar, where fungi coexist. The cell-free supernatant (CFS) of Lacticaseibacillus paracasei ZX1231 exhibited significant inhibitory activities against Aspergillus niger, Penicillium citrinum, Penicillium polonicum, Zygosaccharomyces rouxii, Talaromyces rubrifaciens, and Candida albicans. Among the four cyclic dipeptides (CDPs) uncovered from the CFS, cyclo(Phe-Leu) and cyclo(Anthranily-Pro) were found in the family Lactobacillaceae for the first time, which inhibited the C. albicans filamentation by targeting upon RAS1-cAMP-PKA pathway. CFS antifungal activities were optimally combined with a bacterial nanocellulose (BNC) matrix to prepare the active quality packaging CFS-BNC films. The challenge tests confirmed that CFS-BNC films significantly inhibited the fungi growth and thus prolonged the shelf life of bread, beef, cheese and soy sauce. L. paracasei ZX1231, its CFS, and the CFS-BNC film may have extensive applications in food preservation and food packaging.
Collapse
|
15
|
Feizi H, Plotnikov A, Rezaee MA, Ganbarov K, Kamounah FS, Nikitin S, Kadkhoda H, Gholizadeh P, Pagliano P, Kafil HS. Postbiotics versus probiotics in early-onset colorectal cancer. Crit Rev Food Sci Nutr 2022; 64:3573-3582. [PMID: 36250549 DOI: 10.1080/10408398.2022.2132464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotics and postbiotics mechanisms of action and applications in early-onset colorectal cancer (EOCRC) prevention and treatment have significant importance but are a matter of debate and controversy. Therefore, in this review, we aimed to define the probiotics concept, advantages and limitations in comparison to postbiotics, and proposed mechanisms of anti-tumor action in EOCRC prevention and treatment of postbiotics. Biotics (probiotics, prebiotics, and postbiotics) could confer the health benefit by affecting the host gut microbiota directly and indirectly. The main mechanisms of action of probiotics in exerting anticancer features include immune system regulation, inhibition of cancer cell propagation, gut dysbiosis restoration, anticancer agents' production, gut barrier function renovation, and cancer-promoting agents' reduction. Postbiotics are suggested to have different mechanisms of action to restore eubiosis against EOCRC, including modulation of gut microbiota composition, gut microbial metabolites regulation, and intestinal barrier function improvement via different features such as immunomodulatory, anti-inflammatory, antioxidant, and anti-proliferative properties. A better understanding of postbiotics challenges and mechanism of action in therapeutic applications will allow us to sketch accurate trials in order to use postbiotics as bio-therapeutics in EOCRC.
Collapse
Affiliation(s)
- Hadi Feizi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andrey Plotnikov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg, Russia
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Sergei Nikitin
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Hiva Kadkhoda
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
17
|
Yuan L, Zhang X, Luo B, Li X, Tian F, Yan W, Ni Y. Ethnic Specificity of Species and Strain Composition of Lactobacillus Populations From Mother–Infant Pairs, Uncovered by Multilocus Sequence Typing. Front Microbiol 2022; 13:814284. [PMID: 35387090 PMCID: PMC8979337 DOI: 10.3389/fmicb.2022.814284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The maternal gut is thought to be the principal source of potential probiotic bacteria in the infant gut during the lactation stage. It is not clear whether facultative symbiont lactobacilli strictly follow vertical transmission from mother to infant and display the ethnic specificity in terms of species and strain composition in mother–infant cohorts. In the present study, a total of 16 former Lactobacillus species (365 strains) and 11 species (280 strains) were retrieved from 31 healthy mother–infant pairs of two ethnic groups, which have never intermarried, respectively. The result showed that the composition and number of Lactobacillus species between the two ethnic groups varied. Among 106 Lacticaseibacillus paracasei strains isolated, 64 representative strains were classified into 27 sequence types (ST) by means of multilocus sequence typing (MLST), of which 20 STs derived from 33 Uighur strains and 7 STs from 31 Li strains, and no homologous recombination event of genes was detected between strains of different ethnic groups. A go-EBURST analysis revealed that except for a few mother–infant pairs in which more than one STs were detected, L. paracasei isolates from the same mother–infant pair were found to be monophyletic in most cases, confirming vertical transfer of Lactobacillus at the strain level. More notably, L. paracasei isolates from the same ethnic group were more likely than strains from another to be incorporated into a specific phylogenetic clade or clonal complex (CC) with similar metabolic profile of glycan, supporting the hypothesis of ethnic specificity to a large degree. Our study provides evidence for the development of personalized probiotic tailored to very homogenous localized populations from the perspective of maternal and child health.
Collapse
Affiliation(s)
- Lixia Yuan
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xueling Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xu Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Yan
- School of Food Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Wenli Yan,
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Yongqing Ni,
| |
Collapse
|