1
|
Zhang Z, Gao L, Tao L, Wu T, Suo J, Hu Y, Yu W, Wu J, Song L. Gas Chromatography-Mass Spectrometry Metabolites and Transcriptome Profiling Reveal Molecular Mechanisms and Differences in Terpene Biosynthesis in Two Torrya grandis Cultivars during Postharvest Ripening. Int J Mol Sci 2024; 25:5581. [PMID: 38891770 PMCID: PMC11171539 DOI: 10.3390/ijms25115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Terpene aroma compounds are key quality attributes of postharvest Torreya grandis nuts, contributing to their commercial value. However, terpene biosynthesis and regulatory networks in different T. grandis cvs. are still poorly understood. Here, chief cvs. 'Xi Fei' and 'Xiangya Fei' were investigated for their differences in terpene biosynthesis and gene expression levels during postharvest ripening using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and transcriptomic datasets. A total of 28 and 22 aroma compounds were identified in 'Xi Fei' and 'Xiangya Fei', respectively. Interestingly, differences in aroma composition between the two cvs. were mostly attributed to D-limonene and α-pinene levels as key determinants in Torreya nuts' flavor. Further, transcriptome profiling, correlation analysis, and RT-qPCR annotated two novel genes, TgTPS1 in 'Xi Fei' and TgTPS2 in 'Xiangya Fei', involved in terpene biosynthesis. In addition, six transcription factors (TFs) with comparable expression patterns to TgTPS1 and four TFs to TgTPS2 were identified via correlation analysis of a volatile and transcriptome dataset to be involved in terpene biosynthesis. Our study provides novel insight into terpene biosynthesis and its regulation at the molecular level in T. grandis nut and presents a valuable reference for metabolic engineering and aroma improvement in this less explored nut.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Z.); (L.G.); (L.T.); (T.W.); (J.S.); (Y.H.); (W.Y.)
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Z.); (L.G.); (L.T.); (T.W.); (J.S.); (Y.H.); (W.Y.)
| |
Collapse
|
2
|
Breygina M, Voronkov A, Ivanova T, Babushkina K. Fatty Acid Composition of Dry and Germinating Pollen of Gymnosperm and Angiosperm Plants. Int J Mol Sci 2023; 24:ijms24119717. [PMID: 37298668 DOI: 10.3390/ijms24119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A pollen grain is a unique haploid organism characterized by a special composition and structure. The pollen of angiosperms and gymnosperms germinate in fundamentally similar ways, but the latter also have important features, including slow growth rates and lower dependence on female tissues. These features are, to some extent, due to the properties of pollen lipids, which perform a number of functions during germination. Here, we compared the absolute content and the fatty acid (FA) composition of pollen lipids of two species of flowering plants and spruce using GC-MS. The FA composition of spruce pollen differed significantly, including the predominance of saturated and monoene FAs, and a high proportion of very-long-chain FAs (VLCFAs). Significant differences between FAs from integumentary lipids (pollen coat (PC)) and lipids of gametophyte cells were found for lily and tobacco, including a very low unsaturation index of the PC. The proportion of VLCFAs in the integument was several times higher than in gametophyte cells. We found that the absolute content of lipids in lily pollen is almost three times higher than in tobacco and spruce pollen. For the first time, changes in the FA composition were analyzed during pollen germination in gymnosperms and angiosperms. The stimulating effect of H2O2 on spruce germination also led to noticeable changes in the FA content and composition of growing pollen. For tobacco in control and test samples, the FA composition was stable.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow 119991, Russia
| | - Alexander Voronkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Tatiana Ivanova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow 127276, Russia
| | - Ksenia Babushkina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskiye gory 1-12, Moscow 119991, Russia
| |
Collapse
|
3
|
Zhang Z, Chen W, Tao L, Wei X, Gao L, Gao Y, Suo J, Yu W, Hu Y, Yang B, Jiang H, Farag MA, Wu J, Song L. Ethylene treatment promotes umami taste-active amino acids accumulation of Torreya grandis nuts post-harvest by comparative chemical and transcript analyses. Food Chem 2023; 408:135214. [PMID: 36565552 DOI: 10.1016/j.foodchem.2022.135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/26/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Amino acids play critical roles in physiological processes and also contribute significantly to fruit quality. In this study, the effect of exogenous ethylene on amino acids metabolism and related genes expression in Torreya grandis were investigated. The results revealed that ethylene treatment (3000 μL L-1 for 24 h) significantly increased amino acids level. Umami amino acids were distinctly upregulated in ethylene-treated versus control nuts, with glutamic and aspartic acids to demonstrate 1.9-fold and 2.1-fold increase. Transcriptome analysis revealed that deferentially expressed genes were mainly enriched in alanine aspartate and glutamate metabolism. RT-qPCR confirmed that ethylene treatment up-regulated expression of their biosynthesis genes (TgGOGAT1, TgAATC1, TgAATC4) concurrent with suppression of their degradation enzymes (TgGS2, TgGAD1, TgGAD3, TgASNS1). Ethylene treatment appears to promote umami taste-active amino acids and improve T. grandis nut quality post-harvest.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Xixing Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lingling Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China.
| |
Collapse
|
4
|
Yan J, Zeng H, Chen W, Zheng S, Luo J, Jiang H, Yang B, Farag MA, Lou H, Song L, Wu J. Effects of tree age on flavonoids and antioxidant activity in
Torreya grandis
nuts via integrated metabolome and transcriptome analyses. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jingwei Yan
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiali Luo
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin China
- National Center of Technology Innovation for Synthetic Biology Tianjin China
| | - Baoru Yang
- Food Sciences, Department of Life Technologies University of Turku Turku Finland
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo P.B Egypt
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou Zhejiang China
| |
Collapse
|
6
|
Wen S, Lu Y, Yu N, Nie X, Meng X. Microwave pre‐treatment aqueous enzymatic extraction (
MPAEE
): A case study on the
Torreya grandis
seed kernels oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sisi Wen
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Yuanchao Lu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Ningxiang Yu
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Xiaohua Nie
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| | - Xianghe Meng
- College of Food Science and Technology Zhejiang University of Technology Hangzhou Zhejiang China
| |
Collapse
|